

<u>S</u> trange <u>R</u> things

The Melanopsin, Red Saturation, Brightness Connection

Alp Durmus, Ph.D. Assistant Professor Penn State University 18 March 2025

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

At the end of this course, participants will be able to:

- 1. explain the role of melanopsin in human brightness perception.
- 2. describe the impact of red saturation on perceived brightness.
- 3. analyze how color gamut can influence the effectiveness of lighting design.
- 4. apply these insights to optimize lighting environments for different use cases.

A group of researchers witness natural forces of lighting, color and perception.

https://s.studiobinder.com/wp-content/uploads/2022/07/Stranger-Things-Cinematography-Explained-Camera-Lighting-Lenses-scaled.jp

Starring: Mr. Clarke

https://screenrant.com/stranger-things-science-teacher-scott-clarke-hero-moments/

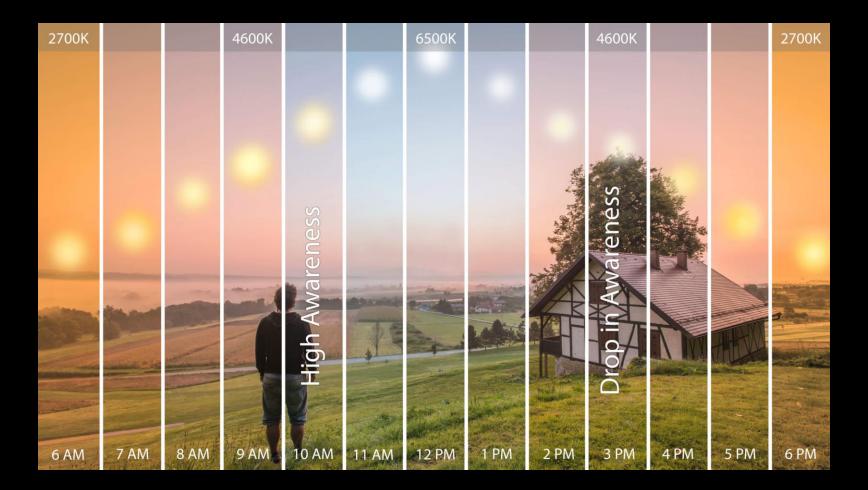
Dr. Alp Durmus Assistant Professor Penn State University

Research focus: lighting, color science, human factors, light pollution, NIF effects of light

Storyline

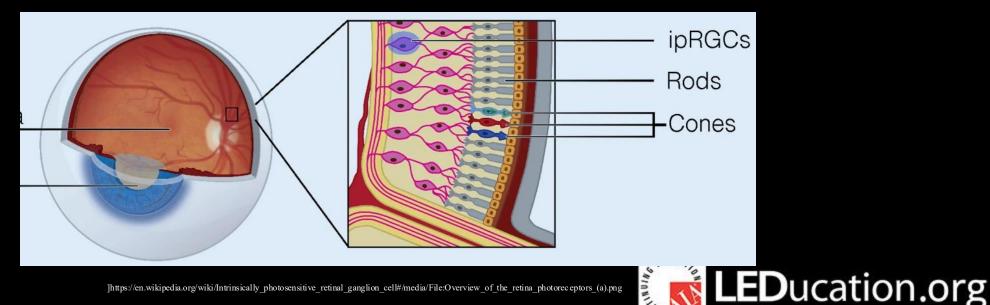
Visual and non-visual effects of Melanopsin

Subjective and perceptual effects of Color gamut


Combined effects of melanopsin and gamut on **Brightness**

<u>chapter one</u> melanopsin

Circadian Rhythm and Lighting

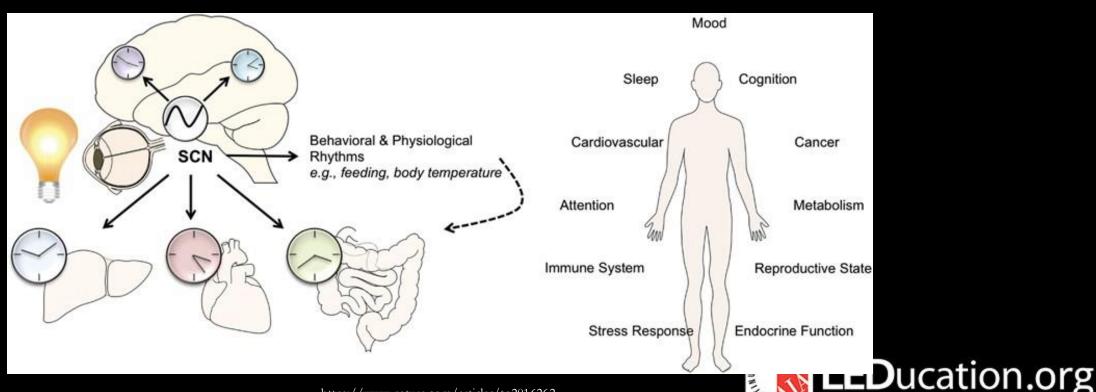

https://www.thelightingpractice.com/what-is-circadian-lighting/

Melanopsin

Photopigment found in intrinsically photosensitive retinal ganglion cells (ipRGCs) in the retina

(Provencio et al., 2000; Hattar et al., 2002)

Adapts to dark-light (similar to rods and cones) but slower

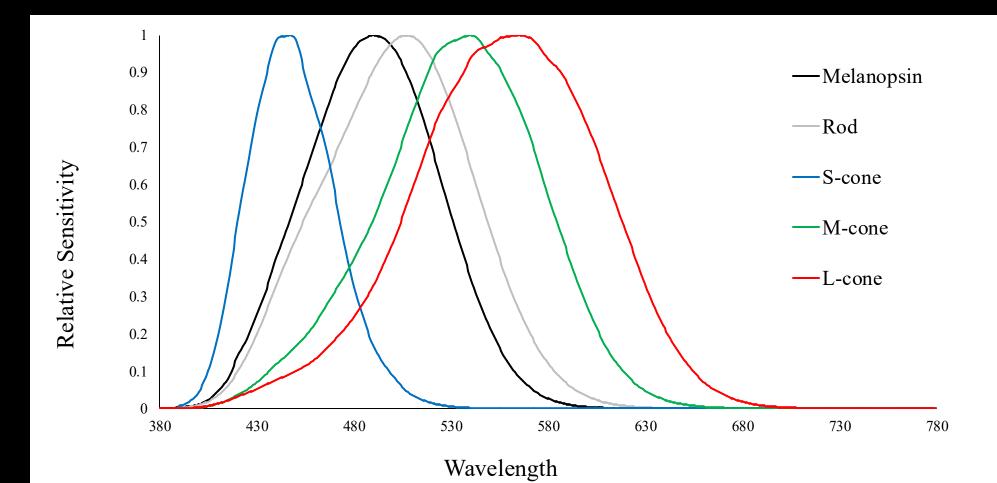


]https://en.wikipedia.org/wiki/Intrinsically photosensitive retinal ganglion cel#/media/File:Overview of the retina photoreceptors (a).png

Melanopsin and Human Body

Contribute to reflexive responses of the brain and body (e.g., pupil dilation, melatonin release, heart rate, body temperature)

(Lucas et al., 2014)


https://www.nature.com/articles/tp2016262

Circadian Rhythm Disruption

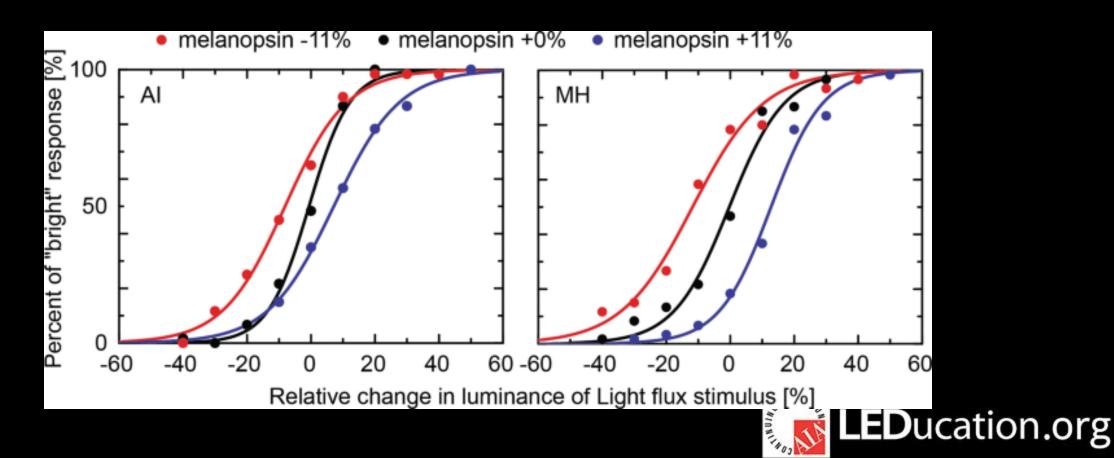
Major influence on sleep quality, alertness, mood, learning, and even prostate or breast cancer. (Altimus et al., 2008; Cajochen et al., 2005; LeGates et al., 2012)

Spectral Sensitivity of Photoreceptors

Melanopic Equivalent Daylight Illuminance (mel-EDI)

Melanopic equivalent daylight illuminance $(E_{v,mel}^{D65}, unit: lx)$

$$E_{v,mel}^{D65} = K_{v,mel}^{D65} \int_{380}^{780} E_e(\lambda) S_{mel}(\lambda) d\lambda$$


- $K_{\nu,mel}^{D65}$ is a constant (753.8 lm/W)
- $S_{mel}(\lambda)$ is melanopsin sensitivity curve
- $E_e(\lambda)$ is is irradiance (W/m²/nm)

Melanopsin Contribution to Brightness

Melanopsin was found to contribute to brightness perception in mice and humans.

(Brown et al., 2012; Zele et al., 2018; Yamakawa et al., 2019; DeLawyer et al., 2020; Zele et al., 2020)

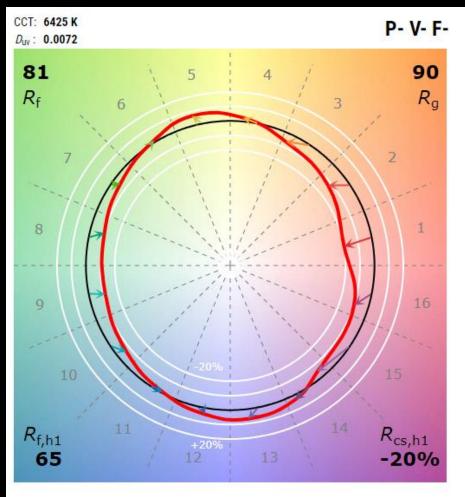
Melanopsin Contribution to Brightness

Spatial brightness model with melanopsin fits better than models without melanopsin contribution. (Besenecker et al., 2016; Besenecker and Bullough, 2017)

 $B_2 = V(\lambda) + 0.6 g \,S(\lambda) + 0.5 \,\text{Mel}(\lambda)$

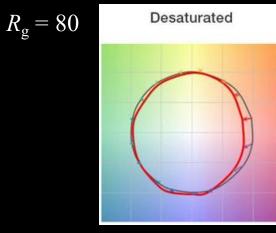
Table 10 Prediction errors for the follow-up study. The reference condition is indicated in bold

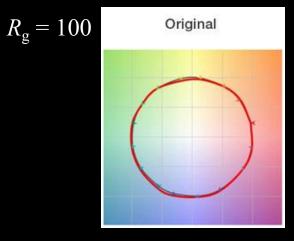
	Amber 1 SPD	Amber 2 SPD	Error (%)
Photopic Illuminance (Ix) ⁵	50	44	13.6
	52	40	23.1
Provisional Brightness B 1 ²⁵	51	48	6.3
• •	53	44	17.0
Provisional Brightness B 2 ³³	52	54	3.7
0 1	54	49	9.3
Mesopic Photometry ³⁵	50	44	13.6
	52	40	23.1



chapter two color gamut

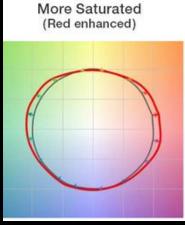
ANSI/IES TM-30 Color Rendition


- Color fidelity index (R_f) : light sources rendering ability of object colors compared to a reference illuminant. Higher values indicate better color fidelity.
- Gamut index (*R*_g): shift in average color saturation of the color samples under the test light source compared to a reference source. Higher values indicate higher average saturation.
- Chroma shift in hue bin 1 ($R_{cs,h1}$): negative values denote desaturation for red objects, and vice versa.

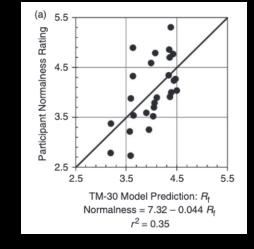


ANSI/IES TM-30 Color Gamut

127 53	
	A-K
	RO



 $R_{\rm g} = 120$



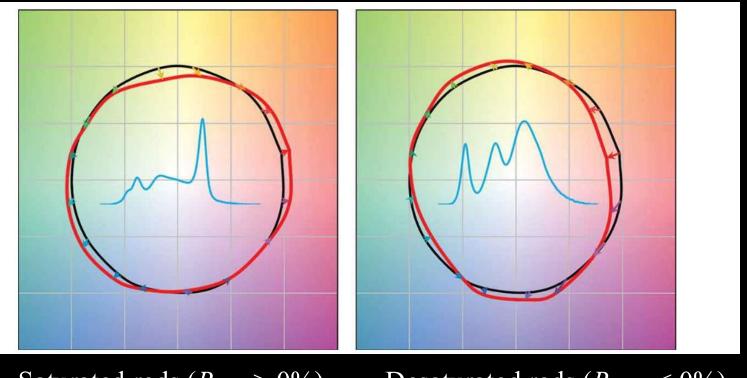
https://hips.hearstapps.com/hmg-prod/images/stranger-things-season-3-1562418265.jpg

Limitations of Fidelity and Gamut

Fidelity metrics are not always good at predicting subjective ratings of "normalness," fidelity, or preference.

Table 3. Pearson Correlation Coefficients between the 20 CQ Metrics and the 3 CQ Attributes ^a										
	IES R_f	Rg	$R_{cs,b1}$	R _a	CIE R_f	Qa	Q_f	Q_p	Q_g	R _{a,02}
Naturalness	0.750*	0.408*	-0.036	0.659*	0.746*	0.752*	0.644*	0.669*	0.253*	0.724*
Colorfulness	-0.078	0.735*	0.919*	-0.289*	-0.079	0.011	-0.266*	0.686*	0.859*	-0.160
Preference	0.534*	0.651*	0.388*	0.369*	0.531*	0.573*	0.369*	0.811*	0.573*	0.476*
	R _{a,12}	RCRI	FCI	FCI02	FI	CPI	R _m	GAI	CDI	CSA
Naturalness	0.779*	0.615*	0.170	0.180	0.744*	0.545*	0.547*	0.091	0.091	0.038
Colorfulness	0.062	-0.242*	0.910*	0.938*	0.109	0.787*	0.621*	0.380*	0.380*	0.180
Preference	0.622*	0.351*	0.571*	0.582*	0.626*	0.787*	0.692*	0.177	0.177	0.037
"The asterisk o	denotes that the	corresponding	g significance lev	vel (p value) is	less than 0.01.	8				

Zhang, F., Xu, H., & Feng, H. (2017). Toward a unified model for predicting color quality of light sources. Applied Optics, 56(29), 8186-8195.


Royer, M. P., Wilkerson, A., Wei, M., Houser, K., & Davis, R. (2017). Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape. Lighting Research & Technology, 49(8), 966-991.

Limitations of Fidelity and Gamut

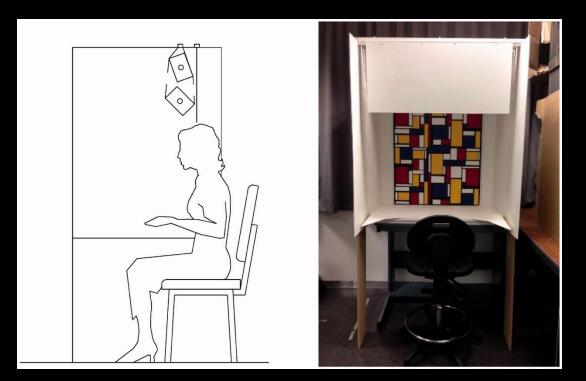
They provide only a partial understanding of color quality.

Similar gamut area ($R_g \approx 100$)

Saturated reds ($R_{cs,h1} > 0\%$)

Desaturated reds ($R_{cs,h1} < 0\%$)

Red Saturation and Preference



Royer, M. P., Wei, M., Wilkerson, A., & Safranek, S. (2020). Experimental validation of colour rendition specification criteria based on ANSI/IES TM-30-18. Lighting Research & Technology, 52(3), 323-349.

Gamut Contribution To Brightness

Higher gamut light sources were perceived brighter compared to lower gamut. (Fotios and Cheal, 2011) (Fotios et al., 2015)

Fotios, S., Atli, D., Cheal, C., & Hara, N. (2015). Lamp spectrum and spatial brightness at photopic levels: Investigating prediction using S/P ratio and gamut area. Lighting Research & Technology, 47(5), 595-612.

Fotios, S. A., & Cheal, C. (2011). Predicting lamp spectrum effects at mesopic levels. Part 1: Spatial brightness. Lighting Research & Technology, 43(2), 143-157.

<u>chapter three</u> melanopsin, gamut & brightness

Study 1: Royer et al.

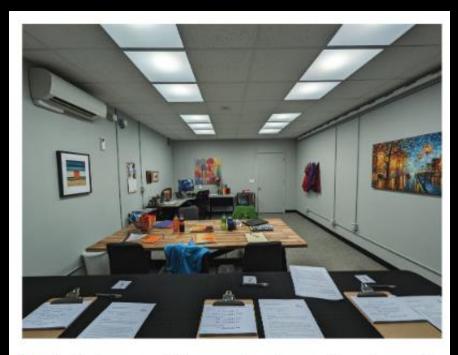
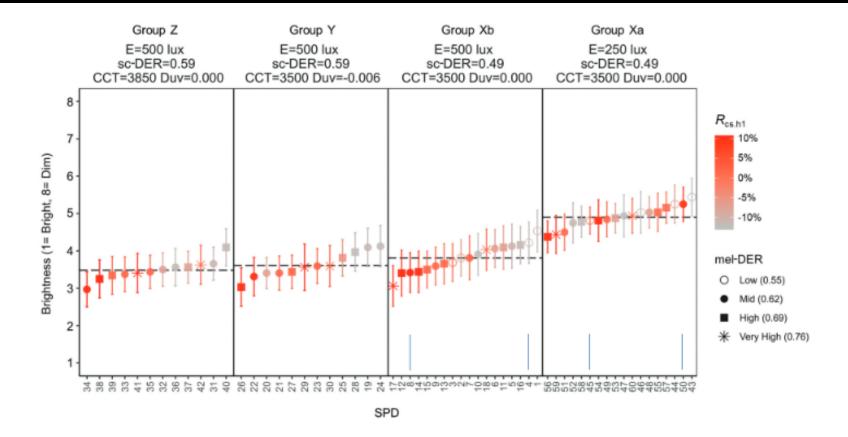
Royer, M., Abboushi, B., & Bermudez, E. R. F. (2024) Relative Contributions of Sc-DER, Mel-DER, Color Rendition, Chromaticity, and Illuminance to Spatial Brightness Perception. *Mel-DER, Color Rendition, Chromaticity, and Illuminance to Spatial Brightness Perception*.

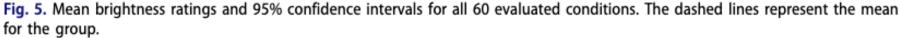
https://getyarn.io/yarn-clip/dd0e97a8-6559-4749-8e98-be8c2f4b7783

Study 1: Methods

Table 2. Nominal	targets	for	the	eight	different	color	rendition
conditions.							

Condition	R _f	Rg	R _{cs,h1}	Orientation
Α	80	100	-12%	Blue-Yellow
В	80	100	-7%	Blue-Yellow
с	80	100	10%	Red-Green
D	80	94	2%	Red-Green
E	80	110	2%	Blue-Yellow
F	80	110	10%	Neutral
G	90	100	2%	Neutral
н	80	94	-12%	Blue-Yellow


Fig. 2. Photograph of the experiment room from the participants' perspective.

Royer, M., Abboushi, B., & Bermudez, E. R. F. (2025) Relative Contributions of Sc-DER, Mel-DER, Color Rendition, Chromaticity, and Illuminance to Spatial Brightness Perception. Mel-DER, Color Rendition, Chromaticity, and Illuminance to Spatial Brightness Perception. LEUKOS.

Study 1: Results

Study 1: Results

Table 7. *P* value of predictors for the four remaining dependent variables (warm-cool, naturaldistorted, vibrant-dull, and like-dislike). The $R_{cs,h1}$:Eh(nom) interaction was not significant for any dependent measure and thus was removed from the models.

	Warm–Cool	Natural–Distorted	Vibrant-Dull	Like – Dislike
E _h (nom)	0.005**	<0.001**	<0.001**	<0.001**
sc-DER	<0.001**	0.387	0.864	0.387
mel-DER	0.456	0.539	0.110	0.413
R _f	0.883	<0.001**	0.806	0.015*
Rg	0.002**	<0.001**	0.769	0.003**
R _{cs,h1}	0.763	0.023	<0.001**	0.602
CCT	0.001**	0.226	0.507	0.253
Duv	<0.001**	0.667	0.363	0.331
R _{cs,h1} ²	-	_	-	<0.001**
$R_{cs,h1}^2:E_h(nom)$	-	-	-	0.032*
* and ** denote sign account for quadra		0.05 and $\alpha \le$ 0.01 levels, r	espectively. Note: R _{csh1}	squared is used to

Study 1: Results

Summary of findings:

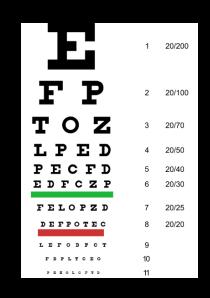
- Illuminance had the largest effect on brightness perception.
- Second largest effect was due to changes in red chroma ($R_{cs,h1}$)
- The effects of melanopsin and CCT were not statistically significant.

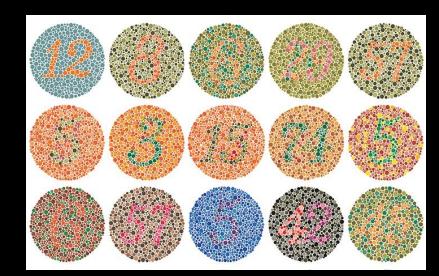
Study 2: Song and Durmus

Hypotheses

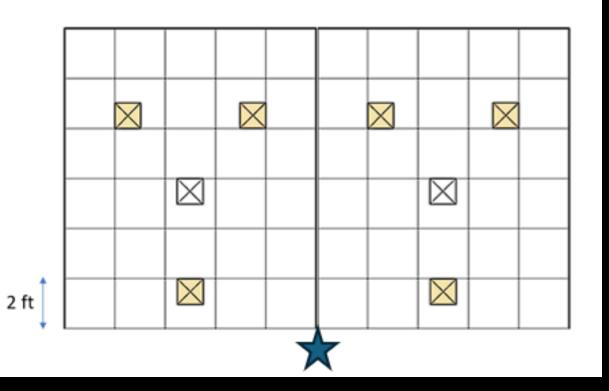
Part 1

• Melanopic equivalent daylight illuminance (mel-EDI) can predict spatial brightness.


Part 2


• Gamut area (R_g) and chroma shift of hue bin 1 $(R_{cs,h1})$ both impact spatial brightness.

Study 2: Methods


- 42 Participants (20 male and 22 female)
- Average age = 26. Ages ranged from 19 to 51.
- Good visual acuity
- Normal color vision
- IRB approved.
- Training was provided.

Study 2: Methods

Study 2: Methods

Side-by-side 2 alternative forced choice (2AFC) method

Study 2: Lighting Conditions (Part 1)

2 CCTs at 2 illuminance levels

	12	0 lx	40 lx		75 lx		40 lx				
		280)0 K		4700 K						
Part 1											
	Pa	ir l	Pa	ir 2	Pa	uir 3	Pair 4				
	pcLED	mcLED	pcLED mcLED		pcLED mcLED		pcLED	mcLED			
E_{ν} (lx)	120.1	120	40	39.6	75.1	74.9	40	39.8			
mel-EDI (lx)	48.1	57.7	15.7	19	39.30	44.2	20.50	25.8			
CCT (K)	2799	2787	2771	2791	4741	4722	4688	4719			
u'	0.2579	0.2589	0.2589	0.2583	0.2061	0.2064	0.2061	0.2057			
v'	0.5268	0.525	0.5286	0.5269	0.5022	0.5024	0.5044	0.5037			
CRI Ra	81.9	82.4	82.4	80.8	63.8	72.9	63.3	76.5			
$R_{ m f}$	84	84.2	84.7	83.6	66.2	65.1	66.20	65.7			
Rg	97.3	97.1	97.1	95.4	94.3	95.2	93.90	93.8			
Duv	0.001	0.0004	0.0019	0.001	0.0122	0.0121	0.0133	0.0132			
R _{csh1}	-10.5	-13	-10.5	-12.1	-18.5	-19	-18.5	-20.1			

Ducation.org

403

Study 2: Results (Part 1)

2800 K

- Lower illuminance: nope!
- Medium illuminance: reverse!!

4750 K

• Lower and higher illuminance: melanopsin predicts

https://giphy.com/gifs/sagawards-reaction-confused-26 x BDMWQLwRgrRJcs

Study 2: Lighting Conditions (Part 2)

Part 2										
	Ref	<u>S1</u>	<u>\$2</u>	<u>83</u>	<u>\$4</u>	<u>\$5</u>	<u>S6</u>	<u>S7.</u>	<u>58</u>	
$E_{\rm v}$ (lx)	40.1	40.0	39.8	40.3	40.1	40.0	39.7	40.0	40.0	
mel-EDI (lx)	31.1	31.3	31.0	30.7	30.9	30.7	31.3	30.7	30.9	
CCT (K)	4724	4610	4782	4766	4669	4645	4625	4894	4668	
Duv	0.0102	0.0088	0.0084	0.0112	0.010	0.012	0.009	0.011	0.0102	
u'	0.2077	0.2108	0.2082	0.207	0.210	0.207	0.210	0.205	0.208	
v'	0.5002	0.4996	0.4972	0.504	0.503	0.504	0.500	0.498	0.501	
CRI Ra	95.6	89.2	91.6	85.7	90.7	87.7	91.8	92.8	84.3	
R _f	96.6	88.1	90.8	84.8	89.1	88.6	91.2	90.8	89.5	
Rs	97.9	98.9	96.8	<mark>108.9</mark>	<mark>91.5</mark>	<mark>106.7</mark>	<mark>93.8</mark>	101.7	<mark>88.8</mark>	
R cshl	0	10	<mark>-11</mark>	0	0	<mark>10</mark>	3	<mark>-5</mark>	<mark>-10</mark>	

- 8 stimulus created compared with Ref.
- Red—Higher, green—lower than Ref.

- S1- Higher $R_{cs,h1}$
- S2- Lower $R_{cs,h1}$
- S3- Higher $R_{\rm g}$
- S4- Lower $R_{\rm g}$
- S5- Higher $R_{\rm g}$, higher $R_{\rm cs,h1}$
- S6- Lower $R_{\rm g}$, higher $R_{\rm cs,h1}$
- S7- Higher $R_{\rm g}$, lower $R_{\rm cs,h1}$
- S8- Lower $R_{\rm g}$, lower $R_{\rm cs,h1}$

Study 2: Results (Part 2)

- S1- Higher $R_{cs,h1}$
- S2-Lower $R_{cs,h1}$ –
- S3- Higher $R_{\rm g}$
- S4- Lower $R_{\rm g}$
- S5- Higher $R_{\rm g}$, higher $R_{\rm cs,h1}$
- S6- Lower $R_{\rm g}$, higher $R_{\rm cs,h1}$
- S7- Higher $R_{\rm g}$, lower $R_{\rm cs,h1}$
- S8-Lower R_{g} , lower $R_{cs,h1}$ –

- S1,S2: Lower $R_{cs,h1}$ brighter.
- S3,S4: Higher R_g brighter.
- S5,S6,S7: Lower $R_{cs,h1}$ + higher R_g brighter.
- S8: Lower $R_{cs,h1}$ + lower R_g brighter (!)

Study 2: Results

Summary of findings:

- Mel-EDI could only predict spatial brightness under lower CCT lighting conditions.
- Lower R_{cs,h1} (desaturated red) and higher R_g (average increased gamut) were perceived brighter, which partially conflict with Royer et al. findings.
- Objects and experimental protocol might explain the differences between study 1 and 2.

Plot Summary

• Melanopsin only partially impacts spatial brightness.

• Color gamut, especially increase in red color, somehow impacts brightness perception of spaces with and without objects.

• $R_{cs,h1}$ and R_{g} together can help predict spatial brightness.



Spin-offs?

• We should investigate the effect of age, wider range of CCT and illuminance levels.

 Adaptation duration and field of view can be further investigated.

• We need theories to test the underlying mechanisms.

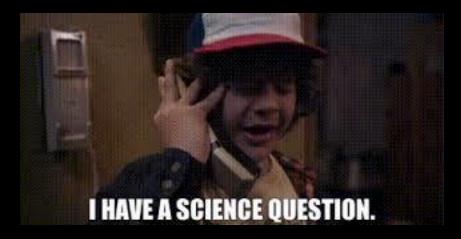
https://screenrant.com/wp-content/uploads/2017/10/stranger-things-meme2.png

Key Takeaways

- Color rendering index (CRI) is outdated and incomplete. Avoid like the plague!
- Designers should
 - Request TM-30 data, especially CVG, $R_{cs,h1}$ and R_{g}
 - Follow CIE guidance using mel-EDI levels where possible
- Manufacturers should
 - Provide TM-30 data, especially CVG, $R_{cs,h1}$ and R_{g}
 - IES has a free TM-30 online calculator:

https://www.ies.org/standards/standards-toolbox/tm-30-spectral-calculator/

Data Collection and Analysis WANYANG SONG


Funding INSTITUTE OF ENERGY AND THE ENVIRONMENT (IEE)

The end!

https://music.getyarn.io/yarn-clip/5885084e-7356-4290-bfe9-81717717360e/gi

This concludes The American Institute of Architects Continuing Education Systems Course

Thank you for attending!

Please scan the QR code to rate it and leave feedback.

LEDucation Presentation Committee

Wendy Kaplan, Kelvix | Craig Fox, ETC | Shaun Fillion, NYSID / RAB | Stacey Bello, KGM Lighting