

Designers Lighting Forum

Light and health...and energy efficiency?

Robert Soler March 17th, 2020

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

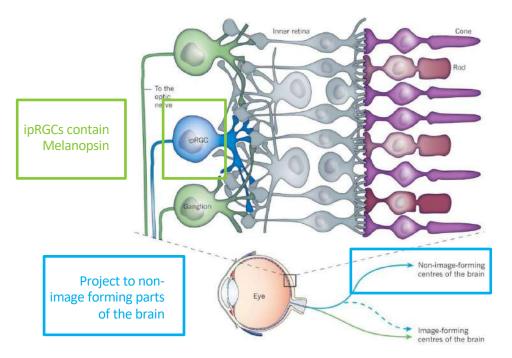
Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

At the end of the this course, participants will be able to:

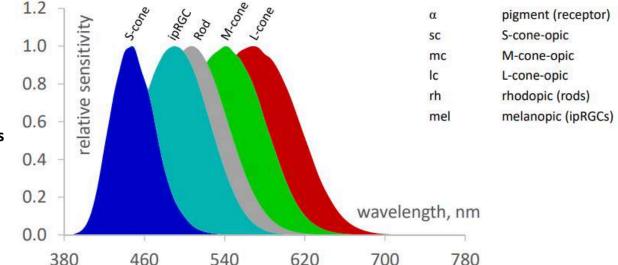
- 1. Understand the physiological effects of light.
- 2. Calculate vertical foot-candles in designs
- 3. Meet criteria for WELL and CS without compromising energy efficiency
- 4. Employ color constancy in design applications

Agenda


- What do we agree on?
- What we don't agree on, yet?
- How to do vertical light calculations
- How to meet the WELL criteria without compromising energy efficiency
- How to take this whole thing to the next level

Light and Health: What do we agree on?

- What it is
 - ipRGCs mediate different physiological effects
 - Direct effects
 - Alertness
 - Melatonin secretion
 - Cognition
 - Mood
 - Indirect effects
 - Circadian entrainment
 - Sleep
 - Mood (yup, again)
- Where it should be
 - Vertical not horizontal light
- How much
 - Each physiological effect appears to be greater than what is required for vision
- Brighter days and darker nights in the built environment
- Anything we do is better than what we are currently doing


What we don't agree on

- The exact role of rods and cones
- Which model should be used
 - LRC CS Model Vs. melanopic lux model Vs. CIE model
- Timing
 - First hour of the day?
 - First 4 hours of the day?
 - All day?
- Exactly how much?
 - 150 m-lux? (WELL V2 1 point)
 - 200 m-lux?
 - 240 m-lux? (WELL V2 3 points)
 - 500 m-lux?
 - CS = 0.3?
- A lot of the "movement" in criteria has been more of an interaction between what's best for light and health and what's best for comfort and energy
- Make no mistake, from a light and health standpoint, brighter is better.

CIE S 026 versus Lucas Model (WELL) for melanopsin

- CIE created a Melanopic DER (Daylight Efficiency Ratio)
 - How much melanopsin is stimulated by a light source relative to D65 (Daylight)
 - Melanopic EDI (Similar to melanopic lux)
 - A high melanopic EDI during the day is usually supportive for alertness, the circadian rhythm and a good night's sleep.
 - A low melanopic EDI in the evening and at night facilitates sleep initiation and consolidation. [CIE position statement]
 - Melanopic Daylight Efficiency Ratio
 - D65 would yield a melanopic DER of 1.
 - Highest sensitivity at 490nm
- WELL model (Melanopic Lux)
 - How much melanopsin is stimulated by a light source relative to Equal Energy Spectrum (~5555K)
 - Highest sensitivity at 490nm
 - Equal energy would yield an m/p = 1.
 - D65 would yield an m/p = 1.1
 - WELL m/p is about 10% higher than melanopic DER.
- Exact same weighting function!

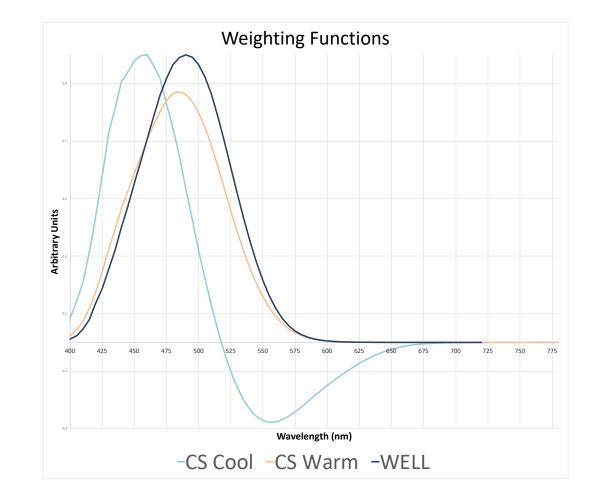
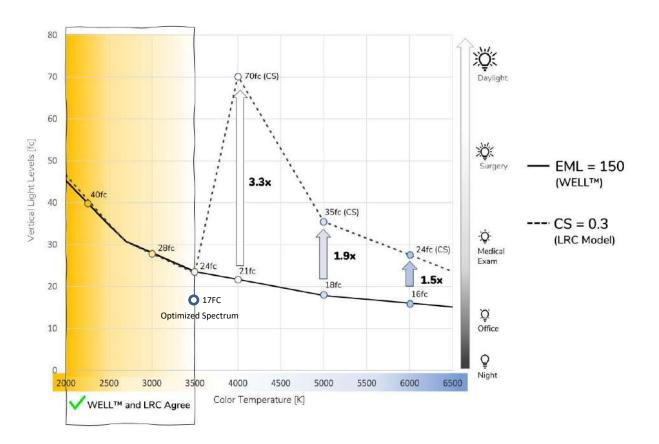


Image credit: CIE S 026 EDI Toolbox userguide https://www.nsvv.nl/wp-content/uploads/2019/03/CIE-S-026-EDI-Toolbox-Userguide-vE1.05x.pdf

WELL versus CS


- The LRC has two models in one
 - Warm model is almost identical to WELL and CIE DER
 - Peak sensitivity at 485nm instead of 490nm
 - Cool model has this sub-additivity that they always talk about
 - Crossover is around 3500K
 - 3500K and warmer is "warm" model
 - Cooler than 3500K is "cool" model

LE:ucation

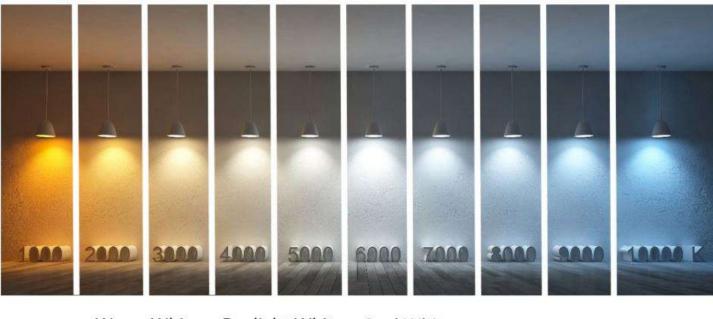
Application: How much we need for daytime versus color temperature

- Standard LED at 2200K requires 40FC vertical for BOTH CS and WELL
- Standard LED at 3000K requires 28FC vertical for BOTH CS and WELL
- Standard LED at 3500K requires 24FC vertical for BOTH CS and WELL
 - Spectrally Optimized will drop this down to 17FC
- At 3500K and warmer, the two models are the same
- Standard LED at 4000K requires 21FC for WELL and 3.3 times that for CS
- Standard LED at 5000K requires 18FC for WELL and 1.9 times that for CS
- Standard LED at 6000K requires 16FC for WELL and 1.5 times that for CS
- When the two models are NOT the same, CS requires significantly more light

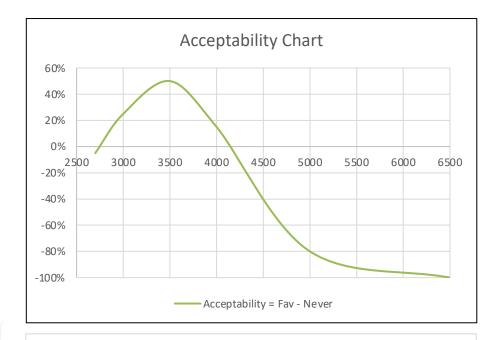
Which color temperature do we want to use in our everyday daytime spaces?

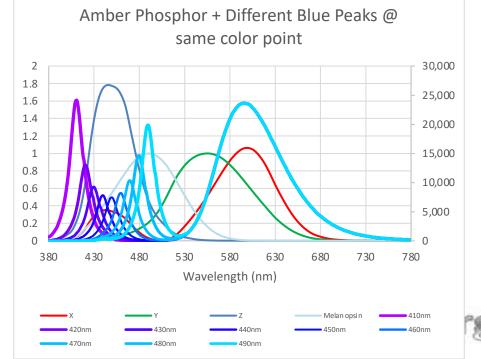
		-		A					
1000	2000	3000	4000	5000	6000	7000	3000	34440	-10000 K

	Favorite CCT	l would never
6500K	XX%	XX%
5000K	XX%	XX%
4000K	XX%	XX%
3500K	XX%	XX%
3000K	XX%	XX%
2700K	XX%	XX%


Warm White Daylight White Cool White 2700K-3300K 4200-4500K 5500-7000K

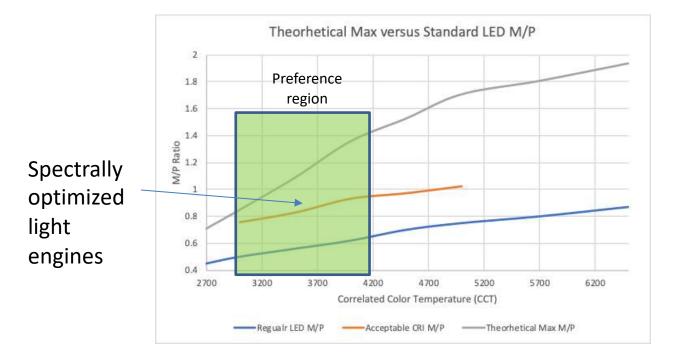
Reminder: CIE, LRC, and WELL all agree at 3500K and warmer

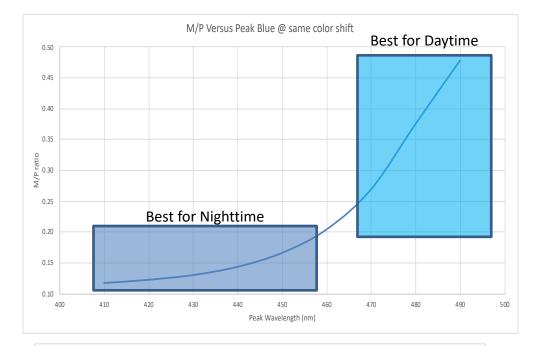

LE:ucation

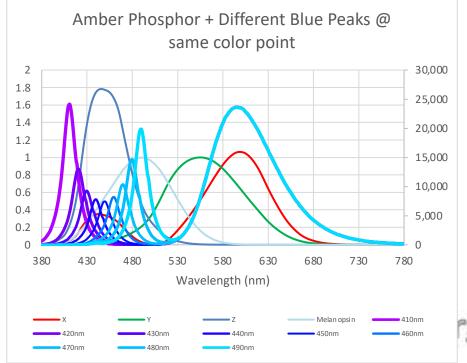

Matching with Preference

- My results from previous questionaires
- In order to maximize melanopic stimulus within the preference range, we have to consider the interaction with color vision

Warm White Daylight White Cool White 2700K-3300K 4200-4500K 5500-7000K






LE:ucation

Where should I put my peak?

- Colder color temperatures have the most capacity for melanopic rich spectrum
- We still have to make sure color rendering isn't compromised

Quick how to (WELL):

- Figure out M/P ratio
 - Some manufacturers will provide
 - Or you can calculate yourself
- Plug M/P ratio as a LLF
- Create a vertical calc plane

Figuring out the m/p

- Calculator can be found at: <u>https://standard.wellcertified</u>. .com/tables#melanopicRatio
- Click data tab to input your own SPD data

	0			ᡖᢄᡃᡪ							🐴 Melano
Ho		nsert Dra	aw Page	Layout F		Data	Review View				
P	<u>h</u> X	Cut	Geneva	~	10 - A	A	= = 🗞 🗸	ab Wrap Text	General		
Pa	aste	Сору 🗸	8 T 11		1 A			Marga 8 Co	eter u 0/		2 Condi
100		Format	b i ⊻	2 <u>111</u> 2	× -	* i		Merge a Ce	nter •] - 5 • 70	Z. 100 →	0 Forma
	Recover	Unsaved Wo	rkbooks. We	were able to	save changes	to one or	more files. Do you want to	recover them?			
		Contraction of the second	100 1000000000000000000000000000000000								
H2				e LED 2700 K							
4	A	В	С	D	E	F	G H	. 1		K	E
1	380	Lampidata 💌 0.000	circadian ×	visual	Lamp*c •	lamp*v 💌	Source Sample LED 2700 I		Melanopic Ratio 0.445		
3	385	0.000	0.0017	0.0001	0.0000		Sample LLD 2700 I		Click here for data inpu	t	
4	390	0.000	0.0031	0.0001	0.0000		Instructions				
5	395	0.000	0.0059	0.0002	0.0000			mple source, or user-ent			
6 7	400 405	0.000	0.0114	0.0004	0.0000	0			r distribution (5 nm incremer as to the left of User 2 on th		6
8	410	0.001	0.0462	0.0012	0.0001				d or modeled lux to calculate		xic kux.
9	415	0.002	0.0795	0.0022	0,0002			*****			11111111
10 11	420 425	0.004	0.1372	0.0040	0.0005	1.52E-05 4.94E-05					
12	430	0.011	0.2539	0.0116	0.0029						
13	435	0.017	0.3207	0.0168	0.0054	0.000284					
14 15	440 445	0.023	0.4016	0.0230	0.0093						
16	450	0.035	0.5537	0.0380	0.0193	0.001324					
17	455	0.031	0.6297	0.0480	0.0193	0.001475					
18 19	460 465	0.023	0.7080	0.0600	0.0162						
20	470	0.014	0.8603	0.0910	0.0117						
21	475	0.012	0.9177	0.1126	0.0106						
22	480 485	0.011	0.9656	0.1390 0.1693	0.0104	0.001491 0.001755	380 400 420 44	0 460 480 500 5	20 540 560 580 600	620 640 660 6	80 700 720
24	490	0.011	1.0000	0.2080	0.0113			Lamp	data <u></u> circadian <u></u> vi	sual	
25	495	0.014	0.9920	0.2586	0.0143						
26 27	500	0.019	0.9660	0.3230 0.4073	0.0184			The second s			
28	510	0.028	0.8629	0.5030	0.0246		WE WE				
29	515	0.033	0.7852	0.6082	0.0259			DING			
30 31	520 525	0.037	0.6996	0.7100	0.0256	0.025929					
32	530	0.042	0.5193	0.8620	0.0219						
33	535	0.044	0.4325	0.9149	0.0192						
34 35	540 545	0.046	0.3517 0.2791	0.9540	0.0161						
36	550	0.049	0.2157	0.9950	0.0105	0.049108					
37	555	0.052	0.1621	1.0000	0.0084	0.05208					
38 39	560 565	0.055	0.1185	0.9950 0.9786	0.0065	0.054924					
40	570	0.063	0.0587	0.9520	0.0037						
41	575	0.067	0.0400	0.9154	0.0027						
42 43	580 585	0.070	0.0269	0.8700	0.0019				1		
44	590	0.076	0.0118	0.7570	0.0009	0.05786					
45	595	0.079	0.0077	0.6949	0.0006	and the second second second second					
46 47	600 605	0.080	0.0051	0.6310 0.5668	0.0004	0.050462					
48	610	0.081	0.0022	0.5030	0.0002						
49	615	0.081	0.0014	0.4412		0.035605					
50 51	620 625	0.079	0.0009	0.3810		0.030137					
52	630	0.072	0.0004	0.2650		0.019206					
53	635	0.068	0.0003	0.2170		0.014836					
54 55	640 645	0.064	0.0002	0.1750	0.0000	0.011185					
56	650	0.055	0.0001	0.1380		0.005922					
	655	0.051		0.0816		0.004152					
57 58	660	0.046	0.0000	0.0610		0.002833					

•	AutoSa	IVE OFF	*82	• ত =				🔹 Melanopic Ratio		AutoSa	ave OFF	^ ⊟ ₪	რ ∨ წ ₹
Home	Insert	Draw	Page Layout	Formulas Data	Review View				Home	Insert	Draw	Page Layout	Formulas Dat
P .	🗸 Cut	Gen	eva	- 9 - A^ A	= = *	v đb Wrap Text v	General		^	X Cut	Arial		~ 10 ~ A^ A
Paste	Copy 🗸 🎸 🏹 Copy	в	I <u>U</u> • []	- <u> </u>		→= 🖶 Merge & Center 🗸	\$ • % 9 🔛		Paste	Copy v	В	I U 🗸 🕂	• <u> </u>
Rec		d Workbo	oks. We were at	ble to save changes to one	or more files. Do you	want to recover them?		ronnatting as i	Rec	over Unsave	d Workboo	ks. We were ab	le to save changes to c
054		√ fx							12	÷ ×	✓ fx	-0.000000032	23
4	A	В	С	D	E	F G	L I H	K L	4	A	В	с	D
1 Wavel	length Z700	ole LED	Sample LED 4000	Sample Fluorescent, 2950 K Same	Ne Fluorescent 400	nple Fluorescent 650" Sample	r 2 🗷 User 1 💌	Equal Energy Constant	1 Wavele		ple LED	Sample LED 4000 S	Sample Fluorescent 295
2	380 385	0	- Tr	1.469086667	0.088942857 0.087871429	1.316893333 10,7834 1.70446 12,70802		1.218	2	380 385	0	0	1.469086667 1.65856
4	390 395	0		1.87856875	0.086866667	2.20519375 12.03508 2.598086667 17.4267		Insert columns to left of User 2 to add additional	4	390	0	0	1.87856875
6	400	C	0	7.646746316	2.477175	10.73393659 22.10276		sources.	5	395 400	0	0	1.928986667 7.646746316
7	405	0.0012778		14.32851284 4.943801961	0.848142857	14.23881 23.82654 4.8469 24.41185			7	405	0	0.001459025	14.32851284
9		002231086		1.92730625	1.448585714 2.37715	4.9355125 23.8595 5.64447333 24.52441			8		0.0012778	0.0026689	4.943801961 1.92730625
11	425 0.0	006768392	0.016133333	1.790826667	11.75395652	6.331693373 23.0354			10	420 0.	003787683	0.008960765	1.81836
12		0.01137806	0.040314286	11.25750127 40.61630899	22.86331753 6.404441176	21.26188296 23.28304 44.453268 24.65627			11 12		006768392	0.016133333	1.790826667
14	440	0.02319		19.96685856 2.28079375	4.28675 4.121685714	19.90576 94 27.33922 9.580693333 28.90782			13 14	435 0. 440	016858824	0.040314286 0.059346552	40.61630899 19.96685856
16	450	0.03485	0.091275	1.960486667	4.23	10.3496 333 29.34359			15		030214286	0.080282692	2.28079375
18	455 0.0	030726923		1.9239125	3.900814286 3.571657143	11.0898 30.4925 11.75982 29.99563			16 17	450 455 0.	0.03485	0.091275	1.960486667
19 20	465 0.0	017192308		2.004453333 2.0921875	3.187814286 3.132028571	12.393 6667 29.01958 12.941 2941 29.2246			18	460	0.022845	0.060321212	1.92348
21	475	0.0115	0.03465	2.256786667	6.116533333	13.35958667 29.58881			19 20	465 0. 470	017192308 0.0136	0.048725	2.004453333 2.0921875
22 23		010728571 010366667		2.382973333 2.574125	10.72654615 9.566345455	13.68372667 29.58318 13.9710625 28.33778			21	475	0.0115	0.03465	2.256786667
24		011316667		2.879453333 3.177446667	6.189957143 3.3182	14 19598 29.2656 14.38 78667 28.93676			22		010728571	0.032333333 0.032428571	2.382973333 2.574125
26	500 0.0	019071429	0.04229	3.55624375	1.539942857	14.373225 28.39326			24		011316667	0.034471429	2.879453333
27		023692308 028486667		4.144153333 4.921406667	1.210757143 0.826914286	14.26049333 28.74863 14.16479375 27.95267			25 26		014446154 019071429	0.0381	3.177446667 3.55624375
29 30	515 0.0	032945455	0.0510625	5.86085	0.8258	14.02 823333 27.04093			27	505 0.	023692308	0.045542857	4.144153333
30		0.03652	0.055711111	6.900866667 7.89455625	0.934114286 5.608104545	13.6 913125 27.13098			28 29		028486667	0.0482	4.921406667 5.86085
32 33		042185714 044428571		8.789933333 9.621433333	29.53066796 75.41515328	13.42994 27.00314 13.2 275333 26.66868			30	520	0.03652	0.053825	6.900866667
34	540 0.0	045714286	0.0628375	14.069025	61.27502029	17.8.160549 26.39452			31 32	525 530 0.	0.0396125	0.055711111 0.057933333	7.89455625 8.789933333
35 36		047433333 049357143		24.65848229 21.1113713	13.64250476 3.532754545	29.567098 26.54004 18.4 561818 25.79795			33		044428571	0.06026	9.621433333
37 38	555 560	0.05208		13.12353684 13.37198667	1.391525	12. 899625 25.03495 12.5 653333 24.71014			34 35		045714286	0.0628375	14.069025 24.65848229
39	565 0.0	058609091	0.0716	14.07691333	6.377933333	12.5 113125 23.8177			36		049357143	0.0664	21.1113713
40		062558333 0666666667		14.91957059 17.19122333	15.62201143 14.76690909	12.4 783333 24.45848 14.3 066977 23.76463			37 38	555 560	0.05208	0.068257143	13.12353684 13.37198667
42	580	0.07042	0.0753	18.82074 17.30793125	18.47862308 16.49222903	15.0 757059 24.4215 12.0 747333 23.40605			39		058609091	0.0716	14.07691333
44	590 0.0	076433333	0.0765	17.26683333	7.89120625	2.0537 23.26213			40 41		062558333	0.073133333	14.91957059
45		078933333 079971429		17.64614375 18.06172667	4.030433333 18.64042625	12.0 601375 22.7122 11.93 939333 22.6133			42	575 0. 580	066666667	0.0742833333 0.0753	17.19122333 18.82074
47	605 0.0	081114286	0.075271429	18.37778	34.09730719	11.86 97333 21.98297			43 44	585 590 0.	0.0735125	0.0761	17.30793125
48 49	610 615	0.0812	0.071871429	18.6537375 18.72960667	9.68624 7.742375	11.70 73125 22.1309 11 49552 21.97493			44 45		076433333 078933333	0.0765	17.26683333
50	620 625	0.0791		18.77437333 18.77115625	8.486135714 3.837385714	11.33833333 21.01736 11.07633125 19.68272			46 47		079971429	0.0763	18.06172667
52	630	0.072475	0.062044444	18.56556667	1.566871429	10. 9736 20.38542			47 48	605 O. 610	081114286 0.0812	0.075271429 0.073816667	18.37778 18.6537375
53		068366667 063914286		18.26672667 17.794975	1.565833333 1.619557143	10.519.0625 20.54702 10.18376667 20.69576			49	615	0.0807	0.071871429	18.72960667
55 56	645 0.4	059458333 055341667	0.05007	17.28023333 16.65584667	1.618414286 1.179928571	9.79049 333 19.5565 9.41501125 20.81234			50 51	620 625	0.0791	0.06883	18.77437333 18.77115625
57	655 0.4	050885714	0.04171	15.962575	1.452228571	8.977146567 19.62564			52	630	0.072475	0.062044444	18.56556667
58 59		046441667 041985714		15.28056 14.4866375	1.177771429 0.957957143	8.56 72 19.97618 8.1318125 19.85317			53 54		068366667	0.05843	18.26672667 17.794975
60	670	0.037525	0.030877778	13.69725333	0.792828571	7.6706533 3 19.36595			55	645 0.	059458333	0.05007	17.28023333
61 62		0.03375 029991667	0.025185714	12.87396 12.00995	1.229214286	7.231993333 19.70443 6.8060187 18.74204			56 57		055341667 050885714	0.045891667 0.04171	16.65584667 15.962575
63 64		0.026575		11.16406	1.008457143 0.4059	6.38232 16.2408 6.088933333 17.58187			58	660 0.	046441667	0.03791	15.28056
65	695	0.0207375	0.018414286	9.5587	1.69665	5.5994 17.34308			59 60	665 O. 670	041985714 0.037525	0.0343	14.4866375 13.69725333
66 67		018171429 016028571		8.75744 8.006453333	3.933855556 2.125175	5.2211 17.22972 4.86321875 7.46368			61	675	0.03375	0.027842857	12.87396
68 69	710 0.0	014642857	0.012916667	7.29395625	0.401571429 0.4005	4.534873333 16.4828 4.205153333 19.53248			62 63	680 0. 685	029991667 0.026575	0.025185714 0.02245	12.00995 11.16406
70	720 0.0	010983333	0.0101247	5.94519375	0.235371429	3.877925 15. 3319			64	690 0.	023655556	0.0206	10.43118667
71 72		0.0094557		5.346246667 4.80328	0.015571429 0.014566667	3.600626667 15.50916 3.325413333 15.56464			65 66		0.0207375	0.018414286 0.0164	9.5587 8.75744
	Circad		Data +		di			3	67	705 0.	016028571	0.014557143	8.006453333
- (#.)E.	= oncau		т	1					4 1	Circad	dian	Data +	

Melanopic Ratio Data Review View Table A^ Ξ ab Wrap Text ♥ Scientific Conditional For \$ • % 9 68 -98 **王 王 王** <u>+=</u> →= Merge & Center 🛩 Formatting as nges to one or more files. Do you want to recover them? - F -F G K L Equal Energy BIOS BIOS 4000K . le Fluorescent 4001 Constant 086667 0.088942857 1.316893333 10.2 834 6.61E-08 -3.23E-09 1.218 1.65856 0.087871429 1.70446 12.70802 6.87E-08 1.49E-08 856875 0.086866667 2.20519375 12 03508 3.85E-08 -2.42E-08 Insert columns to left of 0.808844444 986667 2.598086667 7.4267 3.22E-08 -2.20E-08 User 2 to add additional 746316 2.477175 10.73393659 2.10276 2.81E-08 -2.50E-08 sources. 851284 14.23881 23.82654 4 31E-08 1.74E-09 1.068 801961 0.848142857 4.8469 24.41185 7.51E-08 4.12E-08 4.9355125 23.8595 1.39E-07 1.05E-07 730625 1,448585714 1.81836 2.37715 5.644473333 24.52441 2.96E-07 2.59E-07 11.75395652 6.331693333 23.0354 6.39E-07 6.01E-07 826667 750127 22.86331753 21.2618829 23.28304 1.32E-06 1.32E-06 630899 6.404441176 44.45326 24.65627 2.60E-06 2.72E-06 685856 4.28675 19.9057639 27.33922 4.78E-06 5.19E-06 9.5806933 3 28.90782 7.73E-06 9.25E-06 079375 4.121685714 486667 4.23 10.34961333 29.34359 9.80E-06 1.30E-05 239125 3.900814286 11.0 98 30.4925 9.26E-06 1.30E-05 11.76 82 29.99563 7.39E-06 1.01E-05 1.92348 3.571657143 12.39346567 29.01958 6.93E-06 8.48E-06 453333 3.187814286 921875 3.132028571 12.94182941 29.2246 8.59E-06 9.83E-06 13.3596 667 29.58881 1.23E-05 1.34E-05 13.6837 667 29.58318 1.63E-05 1.74E-05 786667 6.116533333 973333 10.72654615 574125 9.566345455 13.9710625 28.33778 1.77E-05 1.86E-05 6.189957143 453333 14.19598 29.2656 1.60E-05 1.65E-05 446667 3.3182 14.3837 3667 28.93676 1.35E-05 1.37E-05 14.31 3225 28.39326 1.17E-05 1.21E-05 1.539942857 624375 153333 1.210757143 14.260-9333 28.74863 1.07E-05 1.13E-05 406667 0.826914286 14.164 9375 27.95267 1.00E-05 1.07E-05 5.86085 0.8258 14.028 3333 27.04093 9.69E-06 1.04E-05 13.834 0667 26.99912 9.49E-06 1.03E-05 866667 0.934114286 455625 5.608104545 13.639 3125 27.13098 9.40E-06 1.03E-05 13. 2994 27.00314 9.37E-06 1.02E-05 933333 29,53066796 433333 75.41515328 13.272 5333 26.66868 9.38E-06 1.01E-05 .069025 61.27502029 17.821 0549 26.39452 9.51E-06 1.01E-05 848229 13.64250476 29.5 7098 26.54004 9.70E-06 1.02E-05 113713 3.532754545 18.445 1818 25.79795 9.98E-06 1.04E-05 353684 1.391525 12.68 9625 25.03495 1.04E-05 1.06E-05 198667 1.199028571 12.596 3333 24.71014 1.08E-05 1.09E-05 691333 6.377933333 12.54113125 23.8177 1.14E-05 1.15E-05 957059 15.62201143 12.4278333 24.45848 1.22E-05 1.20E-05 14.39065977 23.76463 1.30E-05 1.27E-05 122333 14,76690909 8.82074 18.47862308 15.0175 059 24.4215 1.39E-05 1.35E-05 12.0474 333 23.40605 1.49E-05 1.43E-05 16.49222903 793125 683333 7.89120625 12.0537 23.26213 1.58E-05 1.50E-05 12.0601375 22.7122 1.67E-05 1.57E-05 4614375 4.030433333 172667 18.64042625 11.9303933 22.6133 1.74E-05 1.63E-05 8.37778 34.09730719 11.86397 33 21.98297 1.80E-05 1.68E-05 537375 9.68624 11.70473125 22.1309 1.85E-05 1.71E-05 960667 7.742375 11.49552 21.97493 1.88E-05 1.73E-05 437333 8.486135714 11.338333 3 21.01736 1.88E-05 1.73E-05 115625 3.837385714 11.07693125 19.68272 1.87E-05 1.71E-05 556667 1.566871429 10.7973 20.38542 1.85E-05 1.68E-05 20.54702 1.81E-05 1.63E-05 672667 1.565833333 10.51950625 794975 1.619557143 10.18376667 20.69576 1.75E-05 1.57E-05 023333 19.5565 1.67E-05 1.49E-05 1.618414286 9.790493333 9.41503125 20.81234 1.59E-05 1.41E-05 584667 1.179928571 962575 1.452228571 8.977146667 19.62564 1.50E-05 1.33E-05 9.97618 1.40E-05 1.23E-05 5.28056 1.177771429 8.56572 866375 0.957957143 8.1318125 9.85317 1.30E-05 1.13E-05 7.670653333 19 36595 1.19E-05 1.03E-05 725333 0.792828571 2.87396 1.229214286 7.231993333 19.70443 1.08E-05 9.36E-06 6.80601875 18.74204 9.86E-06 8.47E-06 2.00995 1.5563 6.38232 16.2408 8.90E-06 7.62E-06 6.088933333 17.58107 8.00E-06 6.80E-06 5.5994 17.34300 7.15E-06 6.03E-06 1.16406 1.008457143

0.4059

1.69665

2.125175

5.2211 17.22972 6.35E-06 5.28E-06

4.86321875 17.46368 5.52E-06 4.65E-0

3.933855556

LE:ucation

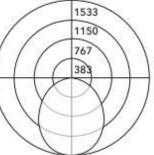
- Calculator can be found at: <u>https://standard.wellcertified.com</u> /tables#melanopicRatio
- Click data tab to input your own SPD data
- In this instance, we see an m/p of 0.911 (We'll use 0.9 for our example)

	• • A	utoSave	JOFF A	⊟ & 5 ·	- U =									Me 🔤	elanopi
оп	ne Inse	rt Dra	w Page	Layout F	ormulas	Data	Review	v View							
2		it 🗍	Arial		ο Δ	A		= 8.	ab, wran Tr		0	cientific			
s	ste 🚿 Fo	rmat	Β Ι ∐	v	O V A	9	三三	72 12 72	Merge a	& Cente	0 9	• %	9 50	.00 	Conditio Formatt
															e service co
F	Recover Un	saved Wor	kbooks. We	e were able to	save changes	to one o	r more fil	es. Do you want to re	ecover them	?					
	\$	XV	fx BIOS 4	юоок											
	A	В	с	D	E	F	G	н		T.		J	К	L	L.
k (i	nm) 🔻 Lam		circadian 💌			lamp*v 💌		Source			Melanopic		-		
	380	0.000	0.0009	0.0000	0.0000	-1.3E-13		BIOS 4000K			-	0.911			
	385	0.000	0.0017	0.0001	0.0000	8.94E-13		Sample LED 27	00 K		Click here	for data input		-	
	390 395	0.000	0.0031	0.0001	0.0000	-2.9E-12		Sample LED 40	00 K	ored	source (ab	(000			
	400	0.000	0.0114	0.0002	0.0000	-16-11		Sample Fluores	cent 2950	V			s) into Data sh	neet.	
	405	0.000	0.0228	0.0006	0.0000	1,118-12		Sample Fluores	cent 4000	Ksto	the left of	User 2 on the	Data sheet.		
	410	0.000	0.0462	0.0012	0.0000	4.99E-11		Sample Fluores	cent 6500	K or	modeled lux	to calculate e	quivalent mela	nopic lux.	
	415 420	0.000	0.0795	0.0022	0.0000	2.29E-10 1.04E-09		Sample Overca	st		mmm	mmm	erereren erer	HIM	17111
	425	0.000	0.1871	0.0073	0.0000	4.39E-05		3500K							
	430	0.000	0.2539	0.0116	0.0000	1.53E-08		4000K			1				
	435 440	0.000	0.3207	0.0168	0.0000	4.58E-08				1/		X			
	445	0.000	0.4740	0.0298	0.0000	2.76E-07				X	/				
	450	0.000	0.5537	0.0380	0.0000	4.94E-07			\mathcal{A}	77	-				
	455	0.000	0.6297	0.0480	0.0000	6.24E-07		//		1.1					
	460 465	0.000	0.7080	0.0600	0.0000	6.06E-07 6.27E-07				/	1				
	470	0.000	0.8603	0.0910	0.0000	8.94E-07									
	475	0.000	0.9177	0.1126	0.0000	1.516-06	5				~				
	480	0.000	0.9656	0.1390	0.0000	2.42E-06	5	380 400 420 440	460 480 50	0 520	540 560	580 600 6	20 640 660	680 70	0 720
	485	0.000	0.9906	0.1693	0.0000	3.15E-06 3.43E-06		300 100 120 110			circae			000 70	
	495	0.000	0.9920	0.2586	0,0000	3.54E-06									
	500	0.000	0.9660	0.3230	0.0000	3.91E-06		1 11							-
	505	0.000	0.9223	0,4073	0.0000	4.6E-06		WELL	NATIONAL						
	515	0.000	0.7852	0.6082	0.0000	6.33E-06	5		UTE"						- li
	520	0.000	0.6996	0.7100	0.0000	7.31E-06	5								
	525 530	0.000	0.6094 0.5193	0.7932 0.8620	0.0000	8.17E-06 8.79E-06	5	~							-
	535	0.000	0.4325	0.9149	0.0000	9.24E-06									
	540	0.000	0.3517	0.9540	0.0000	9.64E-06	5								
	545	0.000	0.2791	0.9803	0.0000	16-05		-					_	-	_
	550 555	0.000	0.2157	0.9950	0.0000	1.03E-05									-
	560	0.000	0.1185	0.9950	0.0000	1.08E-05									
	565	0.000	0.0843	0.9786	0.0000	1.13E-05									
	570 575	0.000	0.0587	0.9520	0.0000	1.14E-05									
	580	0.000	0.0269	0.8700	0.0000	1.17E-05									
	585	0.000	0.0179	0.8163	0.0000	1.178-05									
	590 595	0.000	0.0118	0.7570	0.0000	1.14E-05									
	600	0.000	0.0077	0.6949	0.0000	1.09E-05									
	605	0.000	0.0033	0.5668	0.0000	9.52E-06									
	610	0.000	0.0022	0.5030	0.0000	8.6E-06									
	615 620	0.000	0.0014	0.4412	0.0000	7.63E-06									
	625	0.000	0.0006	0.3210	0.0000	5.49E-06									1
	630	0.000	0.0004	0.2650	0.0000	4.45E-06	5								
	635 640	0.000	0.0003	0.2170	0.0000	3.54E-06									
	645	0.000	0.0002	0.1750	0.0000	2.06E-06									
	650	0.000	0.0001	0.1070	0.0000	1.516-06									
	655	0.000	0.0001	0.0816	0.0000	1.09E-06									
	660	0.000	0.0000	0.0610	0.0000	7.5E-07									

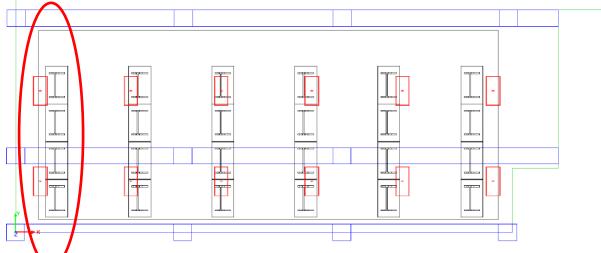
Data

+

Circadian


Open Office with a troffer

- Open Office 66' x 31'
- 5 or 6 long tables with workstations
- Notes: tables facing walls are going to suffer on vertical lux


Photometrics

Satine Lens Test # ITL88934 Catalog # LU24A.84

Test # ITLB8934 Catalog # LU24A.840MO Lumens 4178 im Watts 32.2 W Efficacy 130 LPW

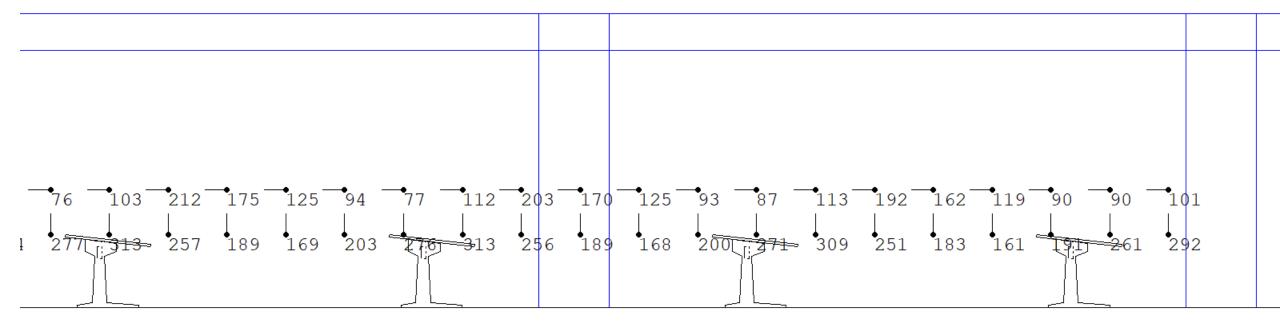
Adding m/p ratio into calcs

• Uploading m/p (0.9) as a LLF

Define Luminaire				×
🛱 Instabase 🔹 🦓 Audit 🔹 💱 Downloaded 🛛 🍃 Collection 🖆	Select 🗰 Find	✓ Smart Symbols	🖌 Auto Define	
Defined Luminaires - Drag-and-drop here! Use Alt+Arrows keys to reorder list				Close
Label Tag Desc	cription	Lo	cations 🔨 🔨	
	B-A-O-B40-B40-4	0		Help
	B-A-O-B40-B40-4	0		
	4A-840L0	0		Relabel
	4A-840M0	0		Delete
LU24A-840MC LU2	4A-840MO	12		
SC2134 4000 C.C.C		0	~	Add/Redefine
General			Pendant Mounted	
Label LU24A-840MO BIOS 👻 Tag			c: Attach to Z=	
			I	
	Def	aults O Static: I	Length =	
Definition	- Arrangement	- Symbols		
Lumens Per Lamp N.A. Number Of Lamps 224	SINGLE	1200X300 MM DOWN	Render Mode	
Luminaire Lumens 4179 Efficiency (%)			Housing	
Luminaire Watts 32.2 S/P Ratio 1	*			
Total LLF 0.900 Specity			Luminous	
	Arm Length	1200X300 MM DOWN	Model Mode	
X Y Z	Ann congar [0			
Luminous Box: LLHC -1.917 -0.919 -0.01		+	Line Width/Color	
URHC 1.917 0.919 0			Pixel 🛨 📕	
Photometric File	·			
Description Classification LCS)	Canc	iela C LCS	
Filename: C:\Users\Erica Voss\Documents\BIOS MARKETING\BIOS Pre	1			
[TEST] ITL88934-GONIOPHOTOMETRY				
[TESTLAB] INDEPENDENT TESTING LABORATORIES, INC.				
[ISSUEDATE] 02/22/17 [MANUFAC] PINNACLE ARCHITECTURAL LIGHTING			8944 A C C C	
ÍLUMCAT1 LU24A-840MO				
LUMINAIRE FABRICATED METAL HOUSING WITH WHITE PAINTED		Pt	Contro State	
			174448887	
[ESNA:LM-63-2002 [INPUT_ELECTRICAL]277.0 VOLTS, 32.2 WATTS, 0.121 AMPS			X44+X/	
PAINTREFLIST.1 %	1			(and a)
< >>			More	
	1			

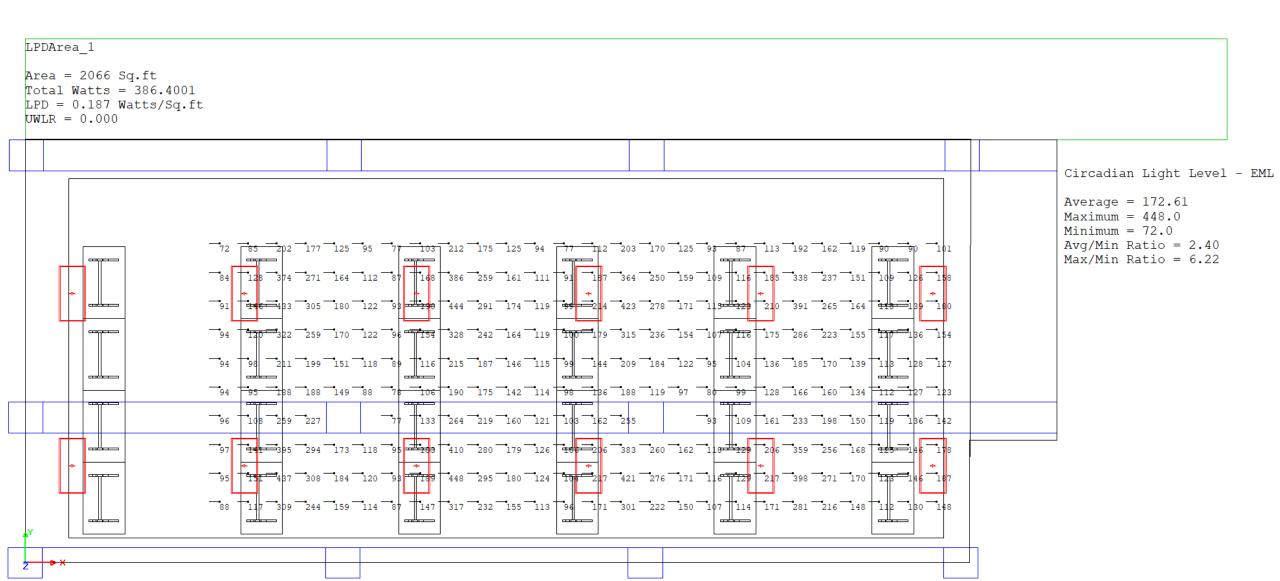
LE: ucation

Setting up vertical calcs


- Must use 2 point calculation
- Tilt light meter 90 degrees
 - Orientation dictates which direction looking
 - Turn on meter indicator to see direction
- 4' above finished floor

Model Toolkit	General
Luminaire Rooms/Objects Drawing/Schedules Calculations Iff Automatic Placement Add: Iff Y	Label Ev Description Vertica Point Spacing: Left-To- I Center Points Relat Analysis Type
Add Colculation Gdd	C Horizontal Meter A Normal To Grid Fixed: Orient C Variable - Meter A Summary
	Average Maximum and Minir Average/Minimum Maximum/Minimum Maximum/Average Number Of Points Coefficient of Variat Uniformity Gradient

Calculation Points - 2 Pt. Grid		×
General Label Ev		Ok
Description Vertical Illuminance		Cancel
Point Spacing: Left-To-Right 5 Top-To-Bottom	5 ft Text Size 1.5	Help
Center Points Relative To Grid Boundaries		
Analysis Type		Highlight
Light Meter		Isolines
O Normal To Grid		2 Pt. Grid
Fixed: Orient Tilt J90 Variable - Meter Aiming Point: X	Z Specify	· · · · ²
Summary ✓ Average ✓ Maximum and Minimum ✓ Average/Minimum Ratio ✓ Maximum/Minimum Ratio ✓ Maximum/Average Ratio Maximum/Average Ratio Number Of Points Coefficient of Variation Uniformity Gradient % Points in Range: 25 To Add Grid Z-Coord: 1st Point 4 2nd Point	Display Options Decimals 0 Color Color Grid Perimeter Lines Visible Mark Points Meter Indicator Labeling	1 Consider using 'Automatic Placement'. Points associated with a surface calculate faster (when using 'Full Radiosity Method').


Elevation view of horizontal calc plane and vertical calc plane

A T L	ota: PD =	- 2 = 2 L Wa = 0.	- 2066 : atts =	Sq.ft = 386.400 Watts/Sq.																											
																													Vis	al Light Leve	ls - Lux
		↓			47 53 42 29	6 48 7 32	431 479 3335 0276	282 308 272 218	241 261 244 217	309 340 299 245	307 3 47 5 5 42 7 4 42 7 4 2 97 3 2 62 2		2 281 2 309 3 276 4 233	240 262 244 216	310 340 300 243	477 5 555 6 927 4 298 3	9 430 94 482 93 391 927 281	0 280 2 306 1 276 7 233	238 256 234 191	306 334 287 227	474 5. 332 6. 417 4: 287 3.	66 42 41 47 87 38 19 28	25 273 75 300 87 270 80 227	230 251 234 207	297 323 286 232	461 −518 −407 −283 −	541 615 465 301		Ave: Max: Min: Avg;	uminance (Lux) cage = 345.21 imum = 647.0 imum = 157.0 /Min Ratio = 2 /Min Ratio = 4	
					35	3 39	3 324	224			344 3	95 330	254	231	269	355 3	96 332	2		255	346 3	95 32	27 247	222	260	346	381				
A ^Y		+		-	53	2 53	9 477	300	252	332	49 5	3 479	305	258	336	53	38 4 74	296	250	332	530 6:	36 47	74 301	253	'331	530	≁ 647		J		
z	Þ	×																													

Data

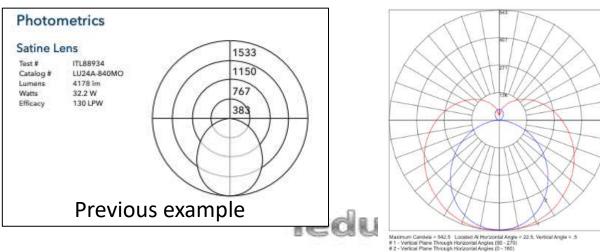
leducation.org

	Standard Troffer design w/ Standard 4000K LED	High output design to meet WELL criteria	Troffer (3,950 lm @ 37.4W) – Spectrally optimized 3500K LED
Fixture Output	4,179 lm	5,403 lm	3,950 lm
Fixture Wattage	32.2 W	42.5 W	37.4 W
Fixture efficacy	129 lm/W	129 lm/W	104 lm/W
ССТ	4000K	4000K	3500K
m/p	0.61	0.61	0.83
LPD	.187	.246	.215
Horizontal lux	345 [32 FC]	446 [41.5 FC]	326 [30 FC]
Vertical lux	191 [18 FC]	246 [23 FC]	181 [16.8 FC]
Vertical m-lux	116	150	150

Spectrally optimized fixtures may "under perform" in efficacy, but when do better in total energy consumption when trying to achieve circadian metrics

In review

- Brighter days and darker nights is the goal
 - The brighter the day, the better
 - The darker the night, the better (didn't get into this much, but trust me)


- Vertical lux is what we need, not horiztonal
- ALL MODELS AGREE AT 3500K and warmer
- That's GREAT, because we like 3500K and warmer.

Getting more vertical lux

• More luminous pendants can get more vertical lux

Data

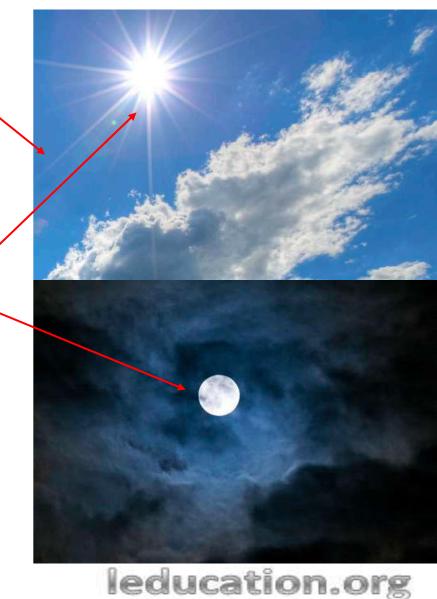
	Luminous pendant design w/ Standard 4000K LED	High output design to meet WELL criteria	Luminous pendant design w/ Spectrally optimized 4000K LED
Fixture Output	2,339 lm	2,690 lm	2,339 lm
Fixture Wattage	27.2 W	32.3 W	33.4 W
Fixture efficacy	85 lm/W	85 lm/W	70 lm/W
ССТ	4000K	4000K	4000K
m/p	0.61	0.61	0.91
LPD	.384	.44	.45
Horizontal lux	320 [30 FC]	368 [34 FC]	320 [30 FC]
Vertical lux	214 [20 FC]	246 [23 FC]	214 [20 FC]
Vertical m-lux	130	150	194

Putting the light where you need it

- Take a page out of task lighting's handbook
- But now, the "task" has changed

But let's go a little further

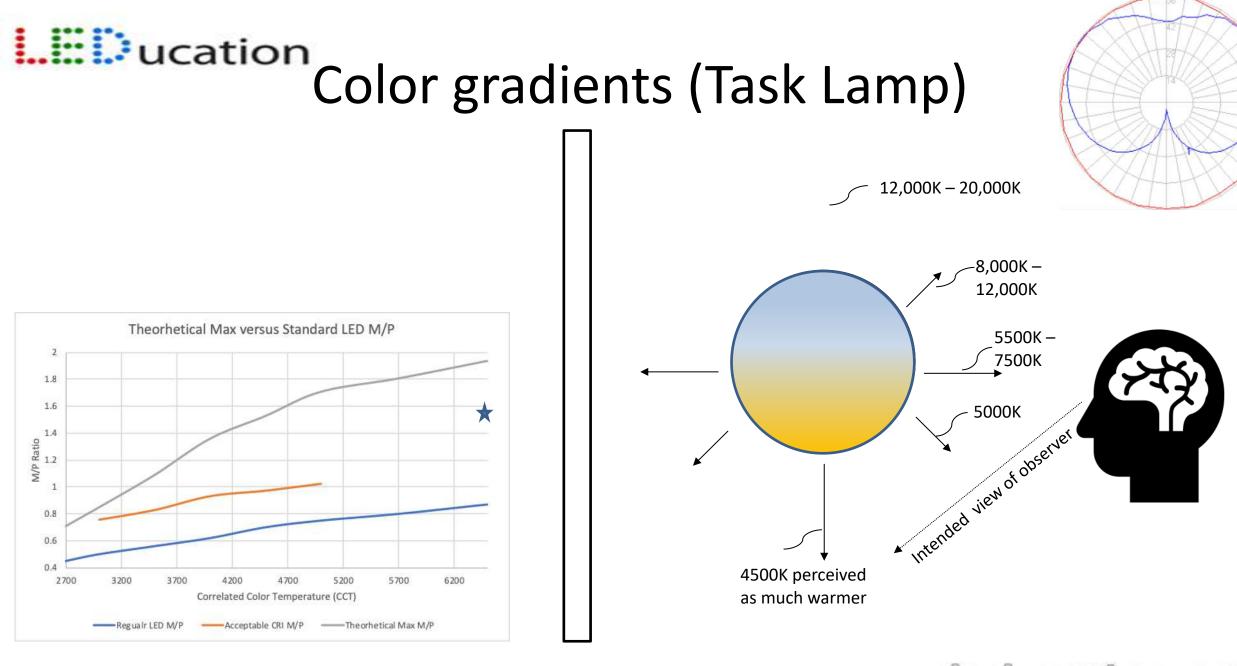
- Why do we dislike 6500K, when it's 6500K outside
- What if we can change preference?
- What if what you see is not what you get?

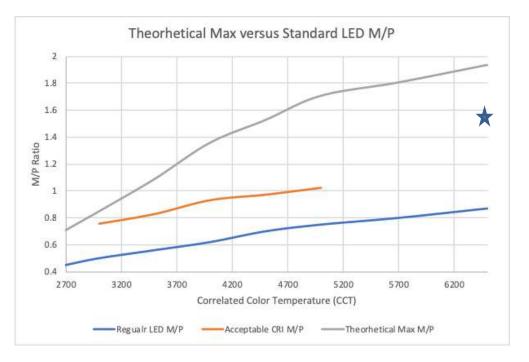

Demonstration 1

Lie ucation Color Constancy (adaptation)

- Our color vision is compromised in the most central field of view
 - Lack of S cones
 - Macular pigment
- We use surrounding information and information about the light source to calculate a perceived color
- Blue colored sky is important to making colder lights appear warmer
- Nature is nominally 6500K
 - Nothing is actually 6500K
 - A gradient of colors warmer than 5000K and colder than 6500K

This is important to shifting the preference curve


Which is warmer?



Demonstration that is WAY better in person


Color gradients (Task Lamp)

Color gradients (Task Lamp)

- 6500K directed at the eye (1.5 m/p ratio)
 - 3 vertical lumens for 1 horizontal lumens
- Provides 200 melanopic lux when placed next to a monitor
 - Takes all the design work out of meeting WELL
- Biophilic component
- Individualized control

Final recap

Health and Wellness lighting:

- We're in enough agreement in order to really get started
- Think about spectrum and color together
 - 490nm peak during the daytime
 - Use coolest acceptable CCT for maximum benefit (note: full agreement at 3500K)
 - 450nm peak at night
 - Use warmest acceptable CCT for maximum benefit
- Standard (not spectrally optimized) LED can achieve daytime requirements, but it will come at the cost of energy and comfort
- Spectrally optimized solutions can provide an energy efficient and comfortable daytime environment
- Luminous pendants can increase the vertical lux compared to traditional light sources

- Color separation can take circadian lighting to the next level
- Task lighting is going to take a new evolution

Catnap Mural by Michael Sommers Location: Carlsbad, CA

Change is the essence of life. Surrender who you are for what you could become.

~ Reinhold Niebuhr

This concludes The American Institute of Architects Continuing Education Systems Course

