Designers Lighting Forum

Not All The Reds Are The Same.
Challenges Of Specifying Color Changing LED
Ellie Motevalian, Toranj Noroozi
03/08/2023

Learning

Objectives

At the end of this course, participants will be able to:

1. This course describes the challenges of using white light illumination metrics for color-changing sources due to differences in human perception of colored and white lights
2. This course identifies the shortcomings of current calculation software and metrics in having consistent and clear measurements to compare the light source's color properties from different manufacturers.
3. This course explores recommendations on the information that the lighting specifiers can include in their fixture specifications to ensure that the final purchased fixtures are the true or close equivalent of the initial design.
4. This course investigates various possibilities that the lighting manufacturers can provide information on the color properties in an effort to create a consistent metric that allows the specifiers to compare different fixtures effectively.
leducation.org

Applications where we use RGB in architectural lighting:

- Branding
- Entertainment
- Mood or Atmosphere
- Way finding

Applications where we use RGB in architectural lighting:

Semi-Conductor Manufacturing
Amber Light

Surgical Rooms - Green Lights

Public Restrooms- Blue Lights

leducation.org

Rendering

Mockups

Cutsheets

IES File

- The Perception of Color

How human eyes see colors:
Cones: Lower sensitivity to light and responsible for color and Photopic vision.
Rods: Higher sensitivity to light and responsible for scotopic vision. Do not mediate color vision
Three different cones types and their sensitivity to each wavelength:

- Long wavelength: L cones
- Medium wavelength: M-cones
- Short wavelength: S-cones

LEDucation

- The Perception of Color

Our vision doesn't respond equally to all wavelength.
Under photopic vision, peak brightness is at bout 555 nm or pale yellow-greenish
The brightness decrease toward red and violet of the spectrum.

leducation.org

- The Perception of Color

Helmholtz-Kohlrausch Phenomenon
Colored stimulus (light reflected from an object or colored light) appears brighter than a white stimulus of the same luminance. The more saturated the stimulus, the brighter it appears to human eyes.

[^0]- Peak Wavelength

The wavelength at which the maximum value occurs in a spectral power distribution. (Peak value measured by a spectrometer)

- Dominant Wavelength (DW)

The dominant wavelength is characterizing a color's hue. (Eye response to a single wavelength that describes what the light source looks like)

IES File or Lumens Information for Each Color

Spectral Distribution/ CIS Tristimulus Values

Optic And Color Mixing Technology

LEDucation
 Trade Show and Conference

Not all reds are the same!

- What information is available on manufacturers websites and cutsheets Out of more than 20 manufacturers:
- 30% shows lumen output for each color on their cutsheet.
- 35% has IES file for each color
- Only 10% have information about dominant and peak wavelength on their cutsheet

Luminous output 1 FT at 12 W	4 FT at 12 W
FULL... 650 lumens	2600 lumens
RED	1160 lumens
GREEN... 580 lumens	2320 lumens
BLUE ... 120 lumens	480 lumens

Gened. Altitules	Photonelty Metirs	5ymbos-Ccriuuzion

Farame mane			Cabromata	${ }_{\text {cosem }}$
			Stemen	
	0	${ }^{10}$	隹	no
\longrightarrow	-	V18		"00
		${ }^{15}$		"0
		*	"eso	
®	0	*	rawe	"
		\cdots	Wew	"
		IT		${ }^{10}$
\square				
	0	*	raw	"
\square	,	"		
		15	Prater	
n)	-	*		
	${ }^{15}$	"13	\%	${ }^{10}$
		${ }^{\prime \prime}$		
-		13		${ }^{10}$
4		-		"
	15	*	mixw,	15
	*	"	Faw	${ }^{10}$
	\%	"	${ }^{\text {cose }}$	"0
-		${ }^{13}$		

leducation.org

LTrade Show and coniference

- Sample Of Peak/ Dominant Wavelength

Most manufacturers only share this data upon request.

photometric study using red IES file no filter

photometric study using red IES file with adjusted color mixing 255 red. 0 green. 0 blue

photometric study using red IES file with Rosco color gel
Primary red

LEDucation

Luminaire Schedule Symbol Q Qty Tag

Not all reds are the same!

leducation.org

Trade Show and Conference

Color mixing: R:0, G:0, B:255

Color mixing: R:255, G:255, B:255

Photo

LEDucation
Trade Show and Conference

Rendering

Color mixing: R:0, G:255, B:0

Photo

White Room

LEDucation

Trade Show and Conference

Rendering

Color mixing: R:255, G:0, B:255

Color mixing: R:255, G:255, B:255

Photo

White Light

Trade Show and Conference

Color mixing: R:0, G:255, B:255

Color mixing: R:255, G:255, B:0

Photo

Cyan: Green + Blue at 100

Yellow: Green + Red at 100

Green Object

White Room

LEDucation
Trade Show and Conference
Not all reds are the same!

- Light Emission Range for RGB Lights

Mockup Test

Illuminance \% compared to white

Photometric Study

Illuminance \% compared to white

LEDucation

LLF adjusted for Green - 34\%

-

Not all reds are the same!

LLF adjusted for Red - 18\%

Red IES File, LLF : 1

LLF adjusted for Blue - 11\%

Blue IES File, LLF : 1
leducation.org

- Manufacturers technologies
- Additive color mixing
- RGB, RGBA, RGBW,
- Up to 7 color mixing, mainly in theatrical fixtures
- Not having the chromaticity values makes it difficult for specifiers to understand what color they can create with RGB fixture

X chromaticity value

X chromaticity value

X chromaticity value
leducation.org

- Manufacturers technologies
- Power distribution
- Traditionally, the power is distributed evenly between channels
- Few manufacturers develop a technology that a single channel can receive even full power
- Not having the lumen output for each color or IES file makes it difficult for specifiers to compare fixtures

Traditional distribution: Each channel receives 33\% of power (or 25% in RGBW, RGBA)

Advance technology: Each channel can receive full power

- Manufacturers technologies
- Discrete LED vs. Quad chip
- The luminous efficacy and optical control is higher in discrete LED fixture.
- Mixing distance in quad chip LED is less compared to discrete LED.
(how far in front of a fixture it takes to separate colored LEDs to mix and form a single color within the beam of light produced by the fixture)

- Color Mixing

Color changing LEDs with separate emitters and various lenses might look different when mixing colors.
The only way to test the fixture is mock-up.

LEDucation
 Trade Show and Conference

- What specifiers can do?

Information to include:
Power distribution for each color.
Light emission range of Red, Green and Blue.
Peak and Dominant wavelength for each color.
x, y, z coordinates on spectral locus or wavelength range.

Don't trust computer generated renders alone
Ask for sample: With all the information in many cases, mock-up is still the best way.

FULL .. 650 lumens	2600 lumens
RED ... 290 lumens	1160 lumens
GREEN.	2320 lumens
BLUE ... 120 lumens	480 lumens

COLOR OR CCT	RED	GREEN	BLUE	WHITE	RGB40K
DISTRIBUTION	$10^{\circ} \times 10^{\circ}$				
IUMENS	1350.7	3476.6	527.0	3501.9	2437.6
EFFICACY L/W	25.7	56.5	8.49	55.3	38.5

UV 360-399nm			0.007	0.00
Blue 400-499nm	18.9	13.40	18.9	12.68
Green 500-599nm	42.2	29.93	42.2	28.32
Red 600-699nm	79.7	56.52	79.7	53.49
Far Red 700-800nm			8.66	5.81

[^1]LTrad Sucation
Not all reds are the same!

- What specifiers can do?

Fixture comparison example

Sample		Total Wattage	Delivered Lumen	Red (Luminous Flux)	Green Luminous Flux)	Blue (Luminous Flux)
\#1	RGBW - 4k	41W (48")	1480	52	118	38
\#2	RGBW - 4k	$\begin{aligned} & 74 \mathrm{~W} \\ & (48 ") \end{aligned}$	2156	$\begin{gathered} 121 \\ x / y=0.1275 / \\ 0.0747 \end{gathered}$	$\begin{gathered} 234 \\ x / y=0.1853 / \\ 0.7190 \end{gathered}$	$\begin{gathered} 81.5 \\ x / y=0.6975 / \\ 0.3019 \end{gathered}$

- Conclusion

Not all reds are the same!
Manufacturers need to be more thorough and transparent with the information provided in their spec sheets The industry needs to define what typical information should be available to simplify fixture comparison (similar to the available standardized information provided for white light)
leducation.org

This concludes The American Institute of Architects Continuing Education Systems Course
leducation.org

[^0]: Source: ANSI/IES LS-5-21 Lighting Science: Color

[^1]: * This information might change depending on the timeline of the project, but it helps prevent unequal substitution.
 * This information might the available upon request from the manufacturer.

