

# **Designers Lighting Forum**

Not All The Reds Are The Same. Challenges Of Specifying Color Changing LED

Ellie Motevalian, Toranj Noroozi 03/08/2023







### Learning Objectives

At the end of this course, participants will be able to:

1. This course describes the challenges of using white light illumination metrics for color-changing sources due to differences in human perception of colored and white lights

2. This course identifies the shortcomings of current calculation software and metrics in having consistent and clear measurements to compare the light source's color properties from different manufacturers.

3. This course explores recommendations on the information that the lighting specifiers can include in their fixture specifications to ensure that the final purchased fixtures are the true or close equivalent of the initial design.

4. This course investigates various possibilities that the lighting manufacturers can provide information on the color properties in an effort to create a consistent metric that allows the specifiers to compare different fixtures effectively.





leducation.org

Applications where we use RGB in architectural lighting:

- Branding
- Entertainment
- Mood or Atmosphere
- Way finding







### Applications where we use RGB in architectural lighting:

Surgical Rooms – Green Lights

Semi-Conductor Manufacturing Amber Light





riversideonline.com/locations/hospitals/riverside-walter-reed-hospital

Public Restrooms– Blue Lights

















| Metrics |                                                                                                                                                                                                                  |                                                                           |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|         | Roadway Classification<br>Longitudinal Classification<br>Upward Waste Light Ratio<br>Indoor Classification<br>Luminaire Efficacy Rating (LER)<br>Maximum UGR<br>BUG Rating<br>Cutoff Classification (deprecated) | Type VS<br>Very Short<br>0.00<br>Direct<br>42<br>14.2<br>B2-U1-G0<br>N.A. |







The Perception of Color

How human eyes see colors:

Cones: Lower sensitivity to light and responsible for color and Photopic vision.

Rods: Higher sensitivity to light and responsible for scotopic vision. Do not mediate color vision

Three different cones types and their sensitivity to each wavelength:

- Long wavelength: L cones
- Medium wavelength: M-cones
- Short wavelength: S-cones









leducation.org

The Perception of Color

Our vision doesn't respond equally to all wavelength.

Under photopic vision, peak brightness is at bout 555 nm or pale yellow-greenish

The brightness decrease toward red and violet of the spectrum.







The Perception of Color

Helmholtz–Kohlrausch Phenomenon

Colored stimulus (light reflected from an object or colored light) appears brighter than a white stimulus of the same luminance.

The more saturated the stimulus, the brighter it appears to human eyes.



Source: ANSI/IES LS-5-21 Lighting Science: Color







leducation.org

Peak Wavelength

The wavelength at which the maximum value occurs in a spectral power distribution. (Peak value measured by a spectrometer)

Dominant Wavelength (DW)

The dominant wavelength is characterizing a color's hue. (Eye response to a single wavelength that describes what the light source looks like)









IES File or Lumens Information for Each Color

Spectral Distribution/ CIS Tristimulus Values

Optic And Color Mixing Technology











- What information is available on manufacturers websites and cutsheets
  Out of more than 20 manufacturers:
  - 30% shows lumen output for each color on their cutsheet.
  - 35% has IES file for each color
  - Only 10% have information about dominant and peak wavelength on their cutsheet

| Luminous output | 1 FT at 12W | 4 FT at 12W |
|-----------------|-------------|-------------|
| FULL            |             | 2600 lumens |
| RED             |             | 1160 lumens |
| GREEN           |             | 2320 lumens |
| BLUE            |             | 480 lumens  |

| General - Attribute  | s Ph            | otometry - Me  | trics          | Symbols    | - Configuration |
|----------------------|-----------------|----------------|----------------|------------|-----------------|
| Photometry           |                 |                |                |            |                 |
| Lumens Per Lamp      | 1102.6          | Number Of La   | imps 1         |            |                 |
| Luminaire Lumens     | 1107            | Efficiency (2) | 10             | 1          |                 |
| Luminaire Watte      | 29.9            | S/P Ratio      | 1              |            |                 |
| Total LLF            | 1.000           | Spe            | cřv            |            |                 |
|                      | 1 0             |                |                |            |                 |
| Luminous Box         | Size >          | 4.034          | т <u> 0.13</u> | 2 2        | 0.01            |
|                      | Offset >        | 0              | Y O            | Z          | -0.005          |
| Photometric Center   | Olfcet ,        |                |                |            |                 |
| From Insertion Point | >               | ; jo           | Y  0           | 2          | -0.305          |
| Rctate Photoma       | ktry 90-Diegraa | s Clockwise    | V              | iew Photon | retric File     |









leducation.org

Sample Of Peak/ Dominant Wavelength

Most manufacturers only share this data upon request.



Photometric Test Results Luminous Flux (Lumens) 81.5 Efficacy (Lumens/Wat1) (1/0) 8.14/15.59 Color Temperature (CCT K) 22,000 Color Rendering Index (CRI) -47.4 Re/Value -312.9 Radiant Flux (W) 1.0 Chroma u' / Chroma Y 0.1401 / 0.1846 Duv N/A RGB Ratio (%) 12.17



Tristimulus Values: x / y = 0.1275 / 0.0747

OF 1631, 3 Deep

Electrical Test Results Input Power (Watts) (I/O) 10.02/5.23 Input Voltage (Volts) (I/O) 10.02/119.84 Input Current (Amps) (I/O) 0.130/0.045 Power Factor (I/O) 0.644/0.961 Input Frequency (Hz) 60.0 Stabilization Time 60 minutes Ambient Temperature 25.1°C Max ITHD (%) 48.78 Spectral Power Distribution Characteristics



Figure 1a. Typical normalized power vs. wavelength for LUXEON Rebel Far Red, Deep Red, Red, Red-Orange, PC Amber, Amber, Green, Cyan, Blue and Royal Blue at test current, T<sub>1</sub>=25°C.









photometric study using red IES file no filter

photometric study using red IES file with adjusted color mixing 255 red . 0 green. 0 blue

| Luminaire Si | chedule |                                        |       |                     |                    |                |
|--------------|---------|----------------------------------------|-------|---------------------|--------------------|----------------|
| Symbol       | Qty     | Тад                                    | ШF    | Luminaire<br>Lumens | Luminaire<br>Watts | Total<br>Watts |
| -            | a) 1    | RED IES File                           | 1.000 | 1107                | 29.9               | 29.9           |
| 0 4          | ≖ 1     | RED IES File - Color Mixing Red at 255 | 1.000 | 1107                | 29.9               | 29.9           |
|              | m 1     | RED IES File - Rosco Gel 106           | 1.000 | 1107                | 29.9               | 29.9           |

|                      | Source Do | l of |                |    | C | alar Fi | hers              |          | Color Mixer | T |
|----------------------|-----------|------|----------------|----|---|---------|-------------------|----------|-------------|---|
| lolor N              | ier       |      |                |    |   |         |                   |          |             |   |
|                      |           |      |                |    |   |         |                   |          |             |   |
|                      |           |      | <br>NON        | t. |   |         |                   | Value    |             |   |
|                      |           |      |                |    |   |         |                   |          |             |   |
| led                  | ۵.        |      | 50             |    |   |         | 100               | 255      |             |   |
| led<br>iseen         | à :       | • •  | 5ù<br>5ù       | •  | • | -       | 100<br>100        | 255<br>0 |             |   |
| led<br>iteen<br>itee | à .       | • •  | 50<br>50<br>50 | •  | • |         | 100<br>100<br>100 | 255<br>D |             |   |





photometric study using red IES file with Rosco color gel Primary red







### Not all reds are the same!



| 0.2     | 0.3 | 0.3 |     | 0.3  | 0.4  | 0.3 | 0.3 | 0.3 |
|---------|-----|-----|-----|------|------|-----|-----|-----|
| 0.4     |     | 0.7 | 0.5 | °0.7 | 8.9  | 0.6 |     | 0.6 |
|         | -11 | 1.1 |     | `i.1 | 1.4  |     | 41  |     |
| * * * * |     |     |     |      | 2020 |     |     |     |

| 0.6 | 1.0 | 1.1              | <sup>+</sup> 1.0 | 1.1              | 1.2 | <sup>*</sup> 1.0 | 0.9              | 1.0 | 0.9              |
|-----|-----|------------------|------------------|------------------|-----|------------------|------------------|-----|------------------|
| L.2 | *2  | 2.3              | <sup>+</sup> 1.6 | *2.4             | 2.8 | 1.8              | <sup>+</sup> 1.8 | 2   | 1.8              |
| L.6 | -4  | <sup>+</sup> 3.6 | <sup>+</sup> 2.0 | <sup>+</sup> 3.6 | 46  | 2.6              | 2.5              | 4   | <sup>+</sup> 3.0 |
| -   | Д.  |                  |                  |                  | 1   | -                | 2.2.4            | 11  | -                |

| Symbol                               | Qty              | Тад                     | ag          |             |            | naire<br>Ins | Luminaire<br>Watts | Total<br>Watts      |
|--------------------------------------|------------------|-------------------------|-------------|-------------|------------|--------------|--------------------|---------------------|
| · · · ·                              | 3                | Blue Color Mixing       | 1.000       | 2494        |            | 39           | 117                |                     |
|                                      |                  |                         |             |             |            |              |                    |                     |
| Calculation S                        | ummary           |                         | 10          |             |            |              |                    | 12                  |
| Calculation S<br>Label               | ummary           | CalcType                | Units       | Avg         | Max        | Mir          | Avg/N              | lin Max/Mir         |
| Calculation S<br>Label<br>Room Study | ummary<br>Wall 3 | CalcType<br>Illuminance | Units<br>Fc | Avg<br>0.21 | Max<br>0.5 | Mir<br>0.1   | Avg/N<br>2.10      | lin Max/Min<br>5.00 |

| Symbol | Qty | Tag               | LLF   | Luminaire<br>Lumens | Luminaire<br>Watts | Total<br>Watts |
|--------|-----|-------------------|-------|---------------------|--------------------|----------------|
| a 1    | - 3 | Red Color Misixng | 1.000 | 2494                | 39                 | 117            |

| Calculation Summary |             |       |      |      | 6.5 |         | 12      |
|---------------------|-------------|-------|------|------|-----|---------|---------|
| Label               | CalcType    | Units | Avg  | Max  | Min | Avg/Min | Max/Min |
| Room Study Wall 3   | Illuminance | Fc    | 0.64 | 1.4  | 0.2 | 3.20    | 7.00    |
| Room 2 Floor        | Illuminance | Fc    | 5.13 | 14.3 | 0.8 | 6.41    | 17.88   |

| Lanninane oc | nouuro |                     |       |                     |                    |                |
|--------------|--------|---------------------|-------|---------------------|--------------------|----------------|
| Symbol       | Qty    | Tag                 | LLF   | Luminaire<br>Lumens | Luminaire<br>Watts | Total<br>Watts |
| · · · ·      | 3      | Green Color Misixng | 1.000 | 2494                | 39                 | 117            |

| Calculation Summary |             |       |       |      |     |         |         |
|---------------------|-------------|-------|-------|------|-----|---------|---------|
| Label               | CalcType    | Units | Avg   | Max  | Min | Avg/Min | Max/Min |
| Room Study Wall 3   | Illuminance | Fc    | 2.08  | 4.6  | 0.6 | 3.47    | 7.67    |
| Room_2_Floor        | Illuminance | Fc    | 17.23 | 48.2 | 2.7 | 6.38    | 17.85   |
|                     |             |       |       |      |     |         |         |







| 15.3    17.8    17.6    19.3    18.6    17.8    17.4    16.8    14.8      16.1    22.6    20.9    18.0    22.3    23.8    19.1    18.7    22.2    18.0 | 11.7 | 13.6 | 13.4 | 14.0 | 14.7              | 13.4 | 14.2              | 13.2 | 12.4 | 11.8 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------------------|------|-------------------|------|------|------|
| 16.1 22.6 20.9 18.0 22.3 23.8 19.1 18.7 23.2 18.0                                                                                                      | 15.3 | 178  | 17.6 | 17.6 | <sup>1</sup> 19.3 | 18.6 | <sup>+</sup> 17,8 | 17.4 |      | 14.8 |
| are and any any second back when a second she was                                                                                                      | 16.1 | 23 6 | 20.9 | 18.0 | 22.3              | 23.8 | 19.1              | 18.7 | 23-2 | 18.0 |

|           |   |  | 12 |        |
|-----------|---|--|----|--------|
| - AL 10.1 |   |  |    |        |
|           | - |  |    | -815-8 |

| ļ | Luminaire Sche | edule |                   |       |           |           |       |
|---|----------------|-------|-------------------|-------|-----------|-----------|-------|
|   | Symbol         | Qty   | Tag               | LLF   | Luminaire | Luminaire | Total |
|   |                |       |                   |       | Lumens    | Watts     | Watts |
|   | •              | 3     | Blue Color Mixing | 1.000 | 2494      | 39        | 117   |
| j |                |       |                   |       |           |           |       |

| Calculation Summary |             |       |      |     |     |         |         |
|---------------------|-------------|-------|------|-----|-----|---------|---------|
| Label               | CalcType    | Units | Avg  | Max | Min | Avg/Min | Max/Min |
| Room_2_Floor        | Illuminance | Fc    | 0.09 | 0.2 | 0.0 | N.A.    | N.A.    |
| Room 2 Wall 3       | Illuminance | Fc    | 0.00 | 0.0 | 0.0 | N.A.    | N.A.    |

| Luminaire Sche | Luminaire Schedule |                   |       |           |           |       |  |  |  |  |
|----------------|--------------------|-------------------|-------|-----------|-----------|-------|--|--|--|--|
| Symbol         | Qty                | Tag               | LLF   | Luminaire | Luminaire | Total |  |  |  |  |
|                |                    |                   |       | Lumens    | Watts     | Watts |  |  |  |  |
|                | 3                  | Red Color Misixng | 1.000 | 2494      | 39        | 117   |  |  |  |  |

| Calculation Summary |             |       |       |      |      |         |         |
|---------------------|-------------|-------|-------|------|------|---------|---------|
| Label               | CalcType    | Units | Avg   | Max  | Min  | Avg/Min | Max/Min |
| Room_2_Floor        | Illuminance | Fc    | 42.31 | 78.1 | 19.2 | 2.20    | 4.07    |
| Room_2_Wall_3       | Illuminance | Fc    | 17.10 | 23.7 | 11.8 | 1.45    | 2.01    |

| Luminaire Sch        | edule |                     |       |           |           |       |
|----------------------|-------|---------------------|-------|-----------|-----------|-------|
| Symbol               | Qty   | Tag                 | LLF   | Luminaire | Luminaire | Total |
| -                    |       | -                   |       | Lumens    | Watts     | Watts |
| • <del>••••</del> •• | 3     | Green Color Misixng | 1.000 | 2494      | 39        | 117   |

| Calculation Summary |             |       |      |     |     |         |         |
|---------------------|-------------|-------|------|-----|-----|---------|---------|
| Label               | CalcType    | Units | Avg  | Max | Min | Avg/Min | Max/Min |
| Room 2 Floor        | Illuminance | Fc    | 0.99 | 2.2 | 0.2 | 4.95    | 11.00   |
| Room 2 Wall 3       | Illuminance | Fc    | 0.05 | 0.1 | 0.0 | N.A.    | N.A.    |























Light Emission Range for RGB Lights



Illuminance % compared to white

Illuminance % compared to white





<sup>+</sup>1.4 <sup>+</sup>4.5 <sup>+</sup>3.7 <sup>+</sup>0. 16 1 13.5 1. <sup>+</sup>3.5 <sup>+</sup>3 ° 2 <sup>+</sup>18 1 <sup>+</sup>15.3 <sup>+</sup>1.

LLF adjusted for Green – 34%



Green IES File, LLF : 1

<sup>+</sup>2.4 <sup>+</sup>2.0 <sup>+</sup>0. <sup>+</sup>0 <sub>°</sub>7 +1. 1.9 <sup>+</sup>8.5 <sup>+</sup>7.1 •9 . ⊾ <sup>+</sup>8.1 +1. <sup>+</sup>2 . 0

 $^{+}$ 0.9  $^{+}$ 2.7  $^{+}$ 2.1  $^{+}$ 0.

12 6 <sup>+</sup>9.7

<sup>+</sup>14 7 <sup>+</sup>11.5 <sup>+</sup>1.

+1.

LLF adjusted for Red – 18%

÷ 2.6

2.9

Red IES File, LLF : 1





LLF adjusted for Blue – 11%



Blue IES File, LLF : 1







- Manufacturers technologies
- Additive color mixing
  - RGB, RGBA, RGBW,....
  - Up to 7 color mixing, mainly in theatrical fixtures
  - Not having the chromaticity values makes it difficult for specifiers to understand what color they can create with RGB fixture







- Manufacturers technologies
- Power distribution
  - Traditionally, the power is distributed evenly between channels
  - Few manufacturers develop a technology that a single channel can receive even full power
  - Not having the lumen output for each color or IES file makes it difficult for specifiers to compare fixtures



Traditional distribution: Each channel receives 33% of power (or 25% in RGBW, RGBA)



Advance technology: Each channel can receive full power







- Manufacturers technologies
- Discrete LED vs. Quad chip
  - The luminous efficacy and optical control is higher in discrete LED fixture.
  - Mixing distance in quad chip LED is less compared to discrete LED.
    (how far in front of a fixture it takes to separate colored LEDs to mix and form a single color within the beam of light produced by the fixture)











leducation.org

Color Mixing

Color changing LEDs with separate emitters and various lenses might look different when mixing colors.

The only way to test the fixture is mock-up.







What specifiers can do?

Information to include:

Power distribution for each color.

Light emission range of Red, Green and Blue.

Peak and Dominant wavelength for each color.

x,y,z coordinates on spectral locus or wavelength range.

Don't trust computer generated renders alone

Ask for sample: With all the information in many cases, mock-up is still the best way.

Not all reds are the same!

| FULL  | 650 lumens | 2600 lumens |
|-------|------------|-------------|
| RED   | 290 lumens | 1160 lumens |
| GREEN | 580 lumens | 2320 lumens |
| BLUE  | 120 lumens | 480 lumens  |

| COLOR OR CCT | RED     | GREEN   | BLUE    | WHITE   | RGB40K  |
|--------------|---------|---------|---------|---------|---------|
| DISTRIBUTION | 10°X10° | 10°X10° | 10°X10° | 10°X10° | 10°X10° |
| lumens       | 1350.7  | 3476.6  | 527.0   | 3501.9  | 2437.6  |
| EFFICACY L/W | 25.7    | 56.5    | 8.49    | 55.3    | 38.5    |

| UV 360-399nm      |      |       | 0.007 | 0.00  |
|-------------------|------|-------|-------|-------|
| Blue 400-499nm    | 18.9 | 13.40 | 18.9  | 12.68 |
| Green 500-599nm   | 42.2 | 29.93 | 42.2  | 28.32 |
| Red 600-699nm     | 79.7 | 56.52 | 79.7  | 53,49 |
| Far Red 700-800nm |      |       | 8.66  | 5.81  |



- \* This information might change depending on the timeline of the project, but it helps prevent unequal substitution.
- \* This information might the available upon request from the manufacturer.





What specifiers can do?

Fixture comparison example

|        | Samplo    | Total        | Delivered | Red                               | Green                             | Blue                           |
|--------|-----------|--------------|-----------|-----------------------------------|-----------------------------------|--------------------------------|
| Sample |           | Wattage      | Lumen     | (Luminous Flux)                   | Luminous Flux)                    | (Luminous Flux)                |
| #1     | RGBW - 4k | 41W (48")    | 1480      | 52                                | 118                               | 38                             |
| #2     | RGBW - 4k | 74W<br>(48") | 2156      | 121<br>x / y = 0.1275 /<br>0.0747 | 234<br>x / y = 0.1853 /<br>0.7190 | 81.5<br>x/y= 0.6975/<br>0.3019 |

### Not all reds are the same!







Conclusion

Not all reds are the same!

Manufacturers need to be more thorough and transparent with the information provided in their spec sheets The industry needs to define what typical information should be available to simplify fixture comparison (similar to the available standardized information provided for white light)







### This concludes The American Institute of Architects Continuing Education Systems Course



