

**Designers Lighting Forum** 

### **Understanding Solar Lighting**

Nancy Clanton, Clanton & Associates David Schmitt, Clanton & Associates AJ Pualani, Selux Sandra Stashik, Selux

March 8th





Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

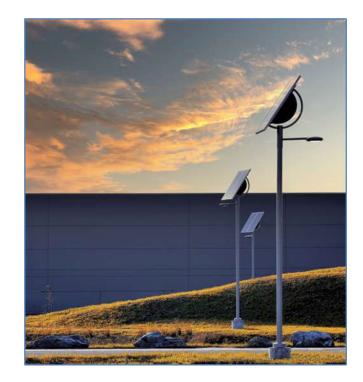
Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.







### Learning Objectives


At the end of this course, participants will be able to:

1. Analyze the components of a solar lighting system and understand what is involved in designing a system

2. Compare solar lighting systems and understand the various operating and control methods

3. Describe how solar lighting ties with the Dark Sky and Responsible Outdoor Lighting at Night movement

4. Identify potential projects where solar power lighting would be an appropriate solution







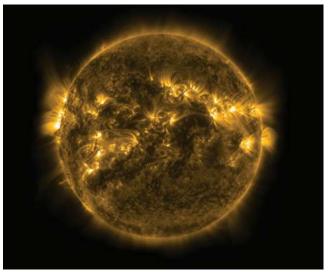
## **UNDERSTANDING SOLAR LIGHTING**

### How it began:

- French Electrical Engineer Willoughby Smith in 1873 observed photoconductivity in practice in selenium (a semiconductor)
- American inventor Charles Fritts in 1883, credited for the first solid solar cell around 1% efficiency today over 20%
- DOE Sponsored Solar Decathlon 2005 Virginia Polytechnic Institute and State University for Architecture and Lighting










# UNDERSTANDING SOLAR LIGHTING

### Why Solar:

- Solar systems derive clean, pure energy from the sun
- Combat green house gases
- Green alternative to traditional power
- Renewable energy source
- Reduce dependance on fossil fuels
- Provide lighting to areas where grid power is not available
- Off electric grid no trenching required



*"U.N. Report officers bleak view on our climate – without political courage, the planet will pass dire emissions marker in 8 years.* 







# **BENEFITS OF SOLAR LIGHTING**

#### Go green

• Solar power is the number one renewable energy source. It is a great way to transition to going green. It takes absolutely nothing from grid power and is naturally produced.

#### Cost effective installation

• Installation is considered low cost, as it is less expensive than trenching grid power. There is no underground running conduit to the light poles like you would see with traditional power.



0

#### Low maintenance

• LEDs are extremely long lasting. If properly installed, the system's batteries will only need some maintenance only every 5-7 years.



#### Low energy bills

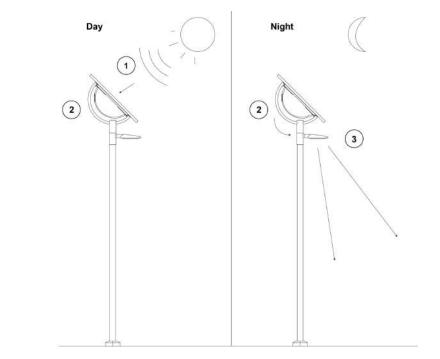
• Reduce energy bills to zero. Though a commercial system can have a higher upfront cost, the savings by utilizing solar power will pay back dividends on this investment.














# **UNDERSTANDING SOLAR LIGHTING**

#### How it Works:

- 1) During daylight hours, photovoltaic modules gather solar irradiation.
- 2) The solar irradiation is converted to electricity and stored in the battery.
- 3) At nighttime, the battery releases its energy to power the luminaire per the programmed lighting profile.









### **COMPONENTS OF SOLAR LUMINAIRE**





# **PHOTOVOLTAIC MODULES**

#### Angled PV Panels

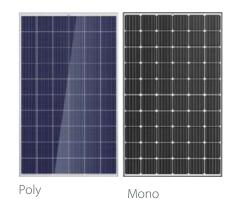
• Angled panels specific to project requirements





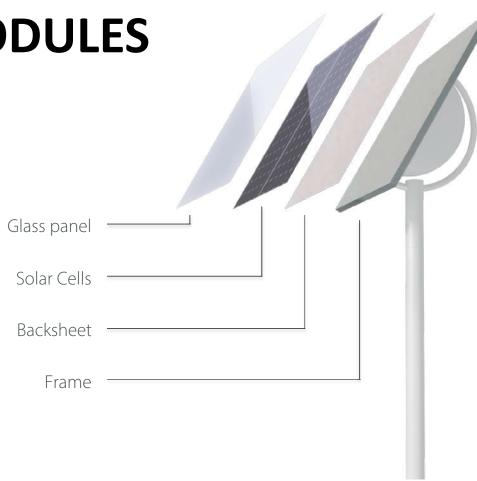
#### Vertical PV Tubes / Panels

• Vertically oriented tubes or panels (360deg)








### **PHOTOVOLTAIC MODULES**



#### Panels

- Polycrystalline cells
   15% to 22%
   efficiency
- Monocrystalline cells
  - •22% to 27% efficiency









# **PHOTOVOLTAIC MODULES**





# **TYPES OF BATTERIES**

#### Nickel Metal Hydride (NiMH)

- Fully dischargeable
- Safer with less active materials than NiCd
- Longer charging times
- Requires more maintenance

#### Absorbent Glass Mat (AGM)

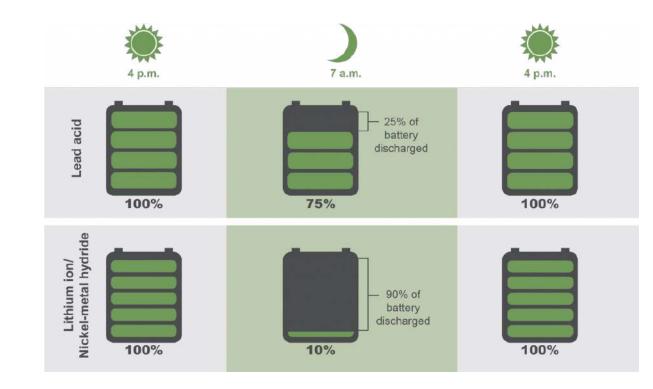
- Low maintenance lead acid battery
- Work in extreme temperatures
- Least expensive
- Requires regular maintenance



#### Lithium Iron Phosphate (LiFePO4)

- Most efficient battery type
- High discharge and recharge rates
- Long cycle life
- Compact and lightweight
- More expensive
- Smaller operating temperature range

#### Gel


- Lead acid battery
- More expensive than AGM
- Better DoD than AGM
- Requires regular maintenance







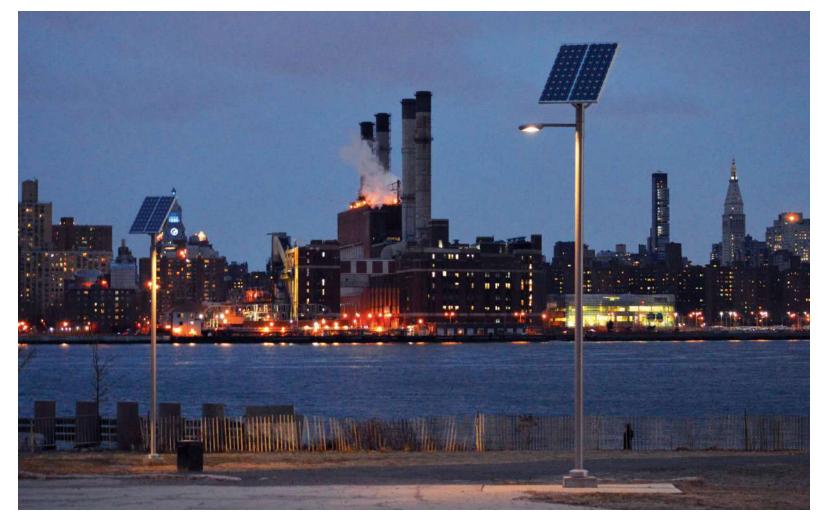
### **DEPTH OF DISCHARGE AND RECHARGE**










### **BATTERY SIZING EXAMPLE**

| Battery Type (Depth of<br>Discharge)     | Minimum Battery Capac<br>Requirement (Load ÷ D0 |                    |          |                                               |                                                                                                                            |  |
|------------------------------------------|-------------------------------------------------|--------------------|----------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Lead acid (25%)                          | 560 ÷ 25% = 2240 Wh                             |                    | Example: |                                               |                                                                                                                            |  |
| Lithium ion (90%)                        |                                                 | 560 ÷ 90% = 623 Wh |          | 40W luminaire x 1                             | 14-hour night = 560Wh                                                                                                      |  |
| Nickel-metal hydride (90%)               |                                                 | 560 ÷ 90% = 623 Wh |          |                                               |                                                                                                                            |  |
|                                          |                                                 |                    |          | are to Client's Load<br>rements               | Analysis of Battery Sizing                                                                                                 |  |
| Manufacturer A<br>(Lead acid: 25% DOD)   | 3400                                            | Wh x 25% = 850 Wh  |          | load is less than the 850 Wh<br>m discharge.  | This shows healthy battery sizing.                                                                                         |  |
| Manufacturer B<br>(Lithium ion: 90% DOD) | 1200                                            | Wh x 90% = 1080 Wh |          | load is less than the 1080 Wh<br>m discharge. | This shows healthy battery sizing.                                                                                         |  |
| Manufacturer C<br>(Lithium ion: 90% DOD) | 500 V                                           | Vh x 90% = 450 Wh  |          | is greater than the 450 Wh<br>m discharge.    | This shows unhealthy battery<br>sizing. Light outage, unscheduled<br>dimming, or premature battery<br>failure is expected. |  |















# SYSTEM MANAGEMENT

#### Controllers / EMS

- Monitors and regulates charging and discharging of batteries
- Programmable per run profile
- Power reserve for non-charged days

#### **Remote Monitoring**

• Avoid outages or reduce luminaire downtime with a system that tells you when a luminaire needs attention

#### **Motion Sensors**

• Use pole or integral luminaire motion sensors to detect occupancy and further save energy when light is not needed









# **IS SOLAR RIGHT FOR YOUR PROJECT**

#### Access to sunlight

• Minimal to no sun obstruction

#### Off grid requirements

• No access to tie to grid

#### Carbon footprint reduction

• Decrease pollution from chemicals and other contaminants

#### Lower electrical or installation costs

• Good ROI

#### Credits

• LEED, renewable rebates, etc.







# HOW TO SIZE A SOLAR SYSTEM

#### It's a balancing act!

#### • Project location

- how much sunlight is available?

- What's the system load? (Array-to-load ratio ALR)

   How much light is required illuminance &
   luminance calculations, luminaire/pole spacing,
   wattage requirements, etc.
- Desired operating profile
  - how will the luminaire be controlled?
  - Will it dim?
  - Will there be a motion sensor?







# HOW TO SIZE A SOLAR SYSTEM

# Three key factors for a properly sized system

- Healthy array-to-load ratio (ALR)
- Sufficient battery capacity and backup power
- Efficient LED luminaire and operating profile









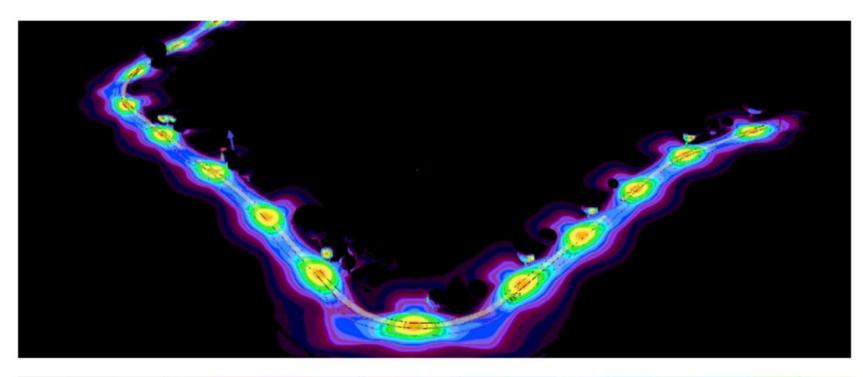

### **LIGHTING PROFILE**

To allow for reliable illumination throughout the year, the following dimming profile is used:

|      | From        |            | То          |            |                 |
|------|-------------|------------|-------------|------------|-----------------|
| Step | Relative to | Offset (h) | Relative to | Offset (h) | Light Level (%) |
| 1    | Sunset      | 0          | Sunset      | 6          | 100             |
| 2    | Sunset      | 6          | Sunrise     | 0          | 30              |

The dimming profile for Chicago over the year performs as follows:







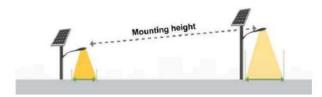




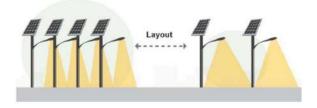

### LUMINANCE / ILLUMINANCE CALCULATIONS



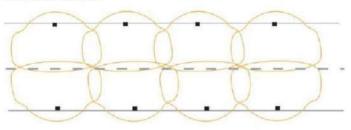
| 0.01 | 0.02 | 0.03 | 0.05 | 0.07 | 0.10      | 0.12 | 0.14 | 0.17 | 0.20 | 0.24 | 0.29 | 0.34 | 0.41 | 0.49 | 0.58 | 0.69 |
|------|------|------|------|------|-----------|------|------|------|------|------|------|------|------|------|------|------|
| 0.83 | 0.98 | 1.17 | 1.40 | 1.67 | 2.00 [fc] |      |      |      |      |      |      |      |      |      |      |      |






# LUMINANCE / ILLUMINANCE CALCULATIONS


Mounting Height




Layout / Spacing



Manufacturer X



Manufacturer Y







### **SOLAR CALCULATOR**

#### RECOMMENDED SYSTEM

Order Code DSCLS-R1-1-L25-30-B1-P1-3xxx-PM4-FINISH-MS

TBD

Solar-powered LED lighting system including series 25W white LED luminaire, 3000K, Type I Optics, Top of Pole Mounted Power Center with enclosed Description battery compartment, includes 110 watt solar array, 118Ahr battery capacity and MPT Controller with Motion Sensor-Polyester Powder Coated Color.

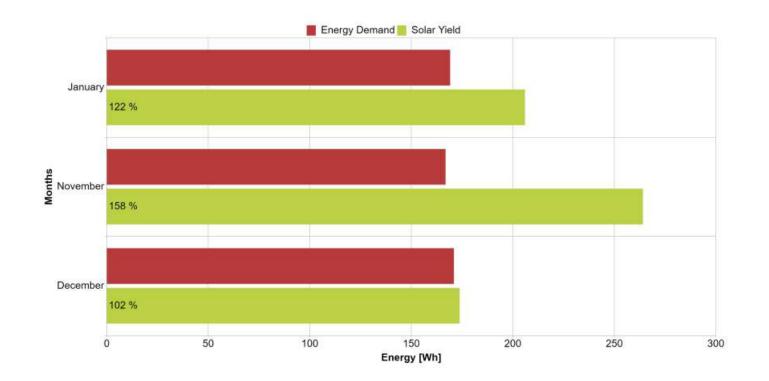
#### Pole Order Code

Total Hours of Light

|                     | Luminaire Detail |  |
|---------------------|------------------|--|
| Luminaire           | Solar Light      |  |
| Luminaire Qty       | 1                |  |
| Wattage Each        | 25W              |  |
| Color Temperature   | 3000K            |  |
| Optics              | Туре І           |  |
| System Lumens Total | 1836lm           |  |
| Finish              | TBD              |  |

| Power Package Detail |                    |  |  |  |
|----------------------|--------------------|--|--|--|
| Solar Panel          | 110W               |  |  |  |
| Panel Qty            | 1                  |  |  |  |
| Battery              | 118Ahr             |  |  |  |
| Battery Qty          | 1                  |  |  |  |
| Solar Panel Tilt     | 45deg              |  |  |  |
| Options              | MS - Motion Sensor |  |  |  |

| Lighting Profile     |                                |  |  |  |
|----------------------|--------------------------------|--|--|--|
| Description          | Preset 3: All night dim at 30% |  |  |  |
| Total Hours of Light | 14.07                          |  |  |  |


#### Calculated Energy-Balance for Site

4.28 Energy In / Out (ALR) 8.27 Days of Battery Storage





### **ENERGY DEMAND VS SOLAR YIELD**















# EVALUATION AND DESIGN PROCESS FOR COMMUNITIES

Participants will be able to:

- 1) Assess existing streetlighting
- 2) Develop design objectives
- 3) Assess solar lighting practically
- 4) Evaluate currently available products
- 5) Estimate probable cost ROI







# 1. ASSESS EXISTING STREETLIGHTING AND LOCATION



**Historic Pedestrian** 

**Historic Downtown** 

Transitional

Industrial



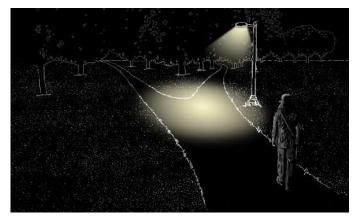


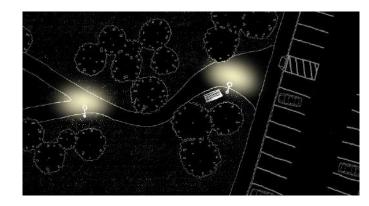


# 2. DEVELOP DESIGN OBJECTIVES

Meet IES / IDA Responsible Nighttime Lighting

| LIGHT TO PR<br>Five Principles |   | NIGHT<br>ble Outdoor Lighting                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USEFUL                         | ? | ALL LIGHT SHOULD HAVE A CLEAR PURPOSE<br>Before installing or replacing a light, determine if light is needed. Consider how the<br>use of light will impact the area, including wildlife and the environment. Consider<br>using reflective paints or self-luminous markers for signs, curbs, and steps to reduce<br>the need for permanently installed outdoor lighting. |
| TARGETED                       |   | LIGHT SHOULD BE DIRECTED ONLY TO WHERE NEEDED<br>Use shielding and careful aiming to target the direction of the light beam so that<br>it points downward and does not spill beyond where it is needed.                                                                                                                                                                  |
| LOW LIGHT<br>LEVELS            | 0 | LIGHT SHOULD BE NO BRIGHTER THAN NECESSARY<br>Use the lowest light level required. Be mindful of surface conditions as some<br>surfaces may reflect more light into the night sky than intended.                                                                                                                                                                         |
| CONTROLLED                     |   | LIGHT SHOULD BE USED ONLY WHEN IT IS USEFUL<br>Use controls such as timers or motion detectors to ensure that light is available<br>when it is needed, dimmed when possible, and turned off when not needed.                                                                                                                                                             |
| COLOR                          |   | USE WARMER COLOR LIGHTS WHERE POSSIBLE<br>Limit the amount of shorter wavelength (blue-violet) light to the least amount<br>needed.                                                                                                                                                                                                                                      |
|                                |   |                                                                                                                                                                                                                                                                                                                                                                          |





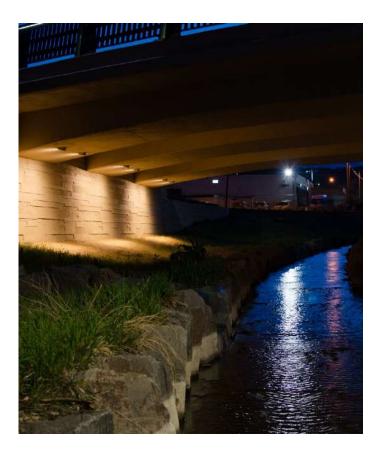











LEDucation. Trade Show and Conference



### Light should be directed only where needed







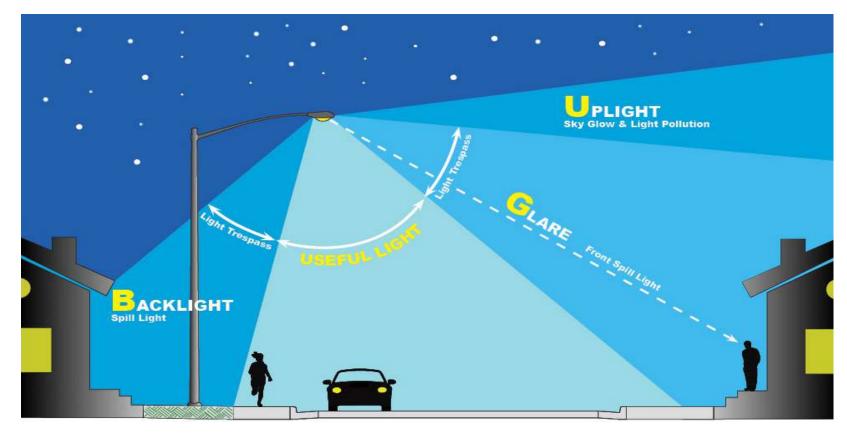




#### TARGETED



### Light should be directed only where needed


| Road<br>Classification | Adjacent Land<br>Use | High<br>Pedestrian<br>Conflict Area | Medium<br>Pedestrian<br>Conflict Area | Low Pedestrian<br>Conflict Area |  |
|------------------------|----------------------|-------------------------------------|---------------------------------------|---------------------------------|--|
|                        | Commercial           | Continuous                          | Continuous                            | Non-Continuous                  |  |
| Arterial               | Industrial           | Continuous                          | Continuous                            | Non-Continuous                  |  |
| Alterial               | Residential          | Continuous                          | Non-Continuous                        | Non-Continuous                  |  |
|                        | Open Space           | Continuous                          | Non-Continuous                        | Non-Continuous                  |  |
|                        | Commercial           | Continuous                          | Continuous                            | Non-Continuous                  |  |
| Collector              | Industrial           | Continuous                          | Continuous                            | Non-Continuous                  |  |
| Collector              | Residential          | Continuous                          | Non-Continuous                        | Non-Continuous                  |  |
|                        | Open Space           | Non-Continuous                      | Non-Continuous                        | Not Warranted                   |  |
|                        | Commercial           | Continuous                          | Non-Continuous                        | Non-Continuous                  |  |
| Local                  | Industrial           | Continuous                          | Non-Continuous                        | Non-Continuous                  |  |
| LUCai                  | Residential          | Non-Continuous                      | Non-Continuous                        | Non-Continuous                  |  |
|                        | Open Space           | Non-Continuous                      | Non-Continuous                        | Not Warranted                   |  |







### **Control Backlight, Uplight and Glare (BUG)**







### **Use Dark Sky Compliant Luminaires**











### **Model with Landscape**







LOW LIGHT

LEVELS

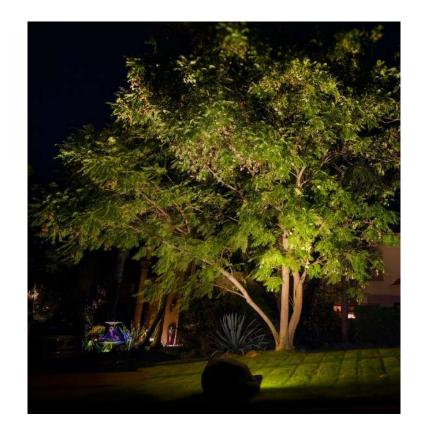















## Light should be used only when it is useful

## Controls ... Controls and More Controls!!!!

- 1. All Lighting specified with **dimmable drivers**
- 2. Turn off non-essential lighting when no one is in the area
- 3. Dim (10%) all other lighting
- 4. Lighting control nodes

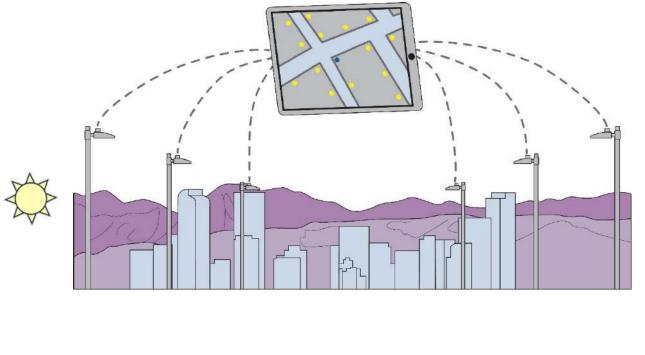






CONTROLLED

Lumen





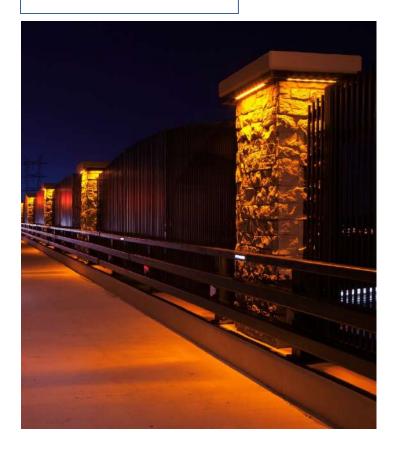

### **Bluetooth based monitoring and control:**

Time

- Scheduling
- Dimming
- Set multiple profiles per day
- Monitor battery
- Access historical light and battery data.









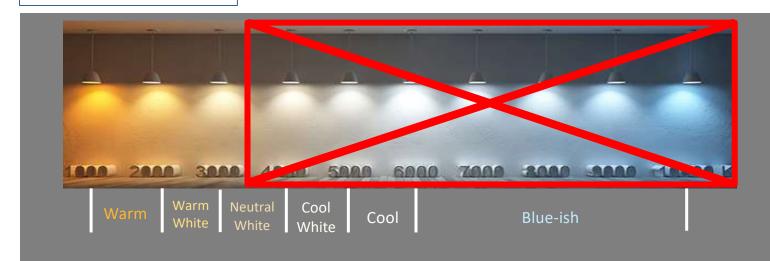

COLOR



### Use warmer color lights where possible












COLOR














## **2. LIGHTING PROFILE**

To allow for reliable illumination throughout the year, the following dimming profile is used:

| Step | From        |            | То          |            |                 |
|------|-------------|------------|-------------|------------|-----------------|
|      | Relative to | Offset (h) | Relative to | Offset (h) | Light Level (%) |
| 1    | Sunset      | 0          | Sunset      | 6          | 100             |
| 2    | Sunset      | 6          | Sunrise     | 0          | 30              |

The dimming profile for Chicago over the year performs as follows:











# **2. DEVELOP DESIGN OBJECTIVES**

### Solar Streetlighting vs. Electrical Fed Streetlighting:

- 1) Know what equipment is out there
- 2) Lighting control nodes
- 3) Fiber mapping
- 4) Underground infrastructure survey
- 5) Require GIS as-built maps









## **3. ASSESS SOLAR LIGHTING PRACTICALLY**







# **4. EVALUATE CURRENT AVAILABLE PRODUCTS**

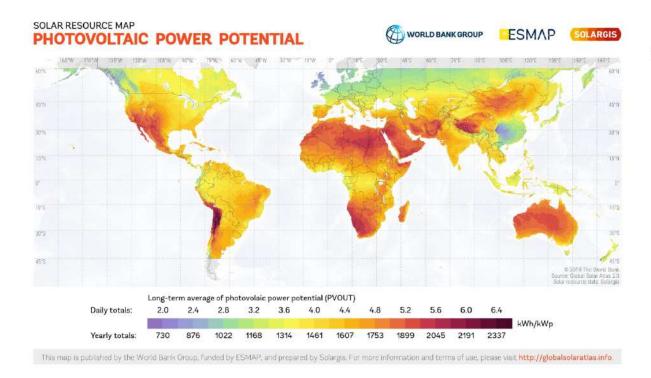
# Compare and Contrast Based on Application:

- Solar angles (declination and azimuth)
- Wind exposure (EPA)
- Snow loads
- Luminaire type
- Battery enclosure style and position
- Aesthetic appeal

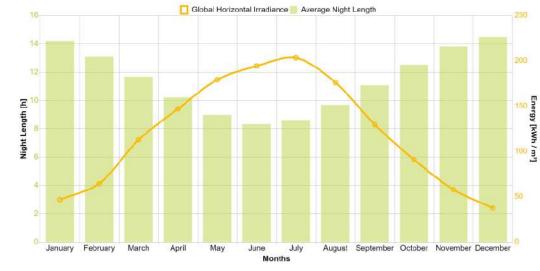









Between Solstices © György Soponyai






## **4. PHOTOVOLTAIC POWER POTENTIAL**



Global Horizontal Irradiance and Average Night Length:



leducation.org

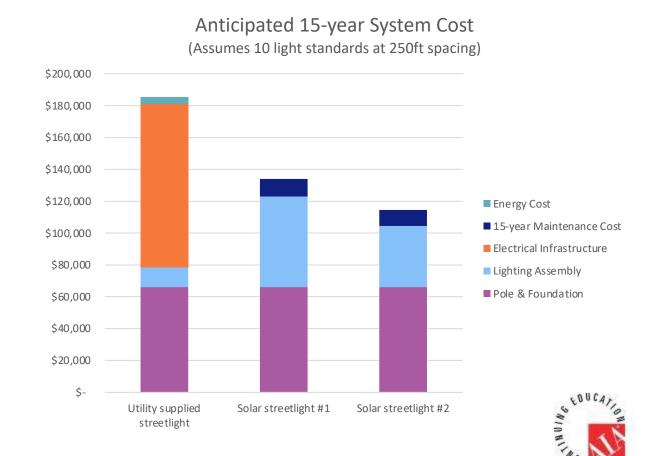
\*Example above for Chicago, USA







# **4. EVALUATE CURRENT AVAILABLE PRODUCTS**


#### Checklist for Solar Streetlighting Systems:

- ✓ LED Luminaire (Efficacy, Distributions)
- ✓ Solar panel efficiency
- ✓ Charge control
- ✓ Maximum Power Point Tracking (MMT)
- ✓ Battery energy storage (Amp-hours or Watt hours)
- ✓ Battery chemistry
- ✓ Battery operating temperature range
- ✓ System autonomy
- ✓ Warranty
- ✓ EPA
- ✓ Enclosure for batteries IP rating, aesthetics





## **5. ESTIMATE PROBABLE COSTS - ROI**









# **THANK YOU!**



David Schmitt Electrical Engineer davidschmitt@clantonassociates.com



Nancy Clanton, PE, FIES, FIALD, LC, LEED Fellow CEO Clanton & Associates, Inc. nancy@clantonassociates.com



AJ Pualani, LC, MIES Manager, Technical Lighting Solutions AJ.Pualani@selux.com



Sandra Stashik, PE, FIES, LEED AP

Regional Sales Manager Sandra.Stashik@selux.com









#### This concludes The American Institute of Architects Continuing Education Systems Course



