

Designers Light Forum

How to Use TM-30

Jason Livingston, Studio T+L, LLC Wendy Luedtke, ETC Michael Royer, PNNL

March 13, 2018

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

At the end of the this course, participants will be able to:

- 1. Become familiar with the calculation results of TM-30, both numerical and graphical
- 2. Interpret TM-30 information presented on a data sheet or in a full TM-30 report
- 3. Recognize the limitations of the system, and more generally recognize the limitations of all measures for color rendition
- 4. Understand how the objective information in TM-30 can be used to aid in subjective design decisions (i.e., matching the right source to an application)

"Original" Baseline

"CRI = 80" Desaturated

"CRI = 80" Saturated

"Original" Baseline

"CRI = 80" + Hue Shift

"CRI = 80" - Hue Shift

IES TM-30-18 (PENDING APPROVAL)

Approved by Color Committee In Process with Standards Commitee Pending Submission to ANSI

Changes made to harmonize with CIE 224

- A. Flat extrapolation for color sample data <400 nm and >700 nm (changed from derivative based)
- B. Mixed reference zone now 4000 K to 5000 K (changed from 4500 K to 5500 K)
- C. Scaling factor now 6.73 (changed from 7.54)

Additional updates

- Specification of Color Vector Graphic formatting
- Clarification on local value calculations and expected values
- Recommended specification sheets
- Updated calculator tools

All discussion in this presentation applies to both!

Global Average Values Fidelity Index $(R_{\rm f})$ Gamut Index $(R_{\rm g})$

TM-30 Calculation Engine

- 1. Model of Human Color Vision (CAM02-UCS)
- 2. Model of Colors (99 CES)
- 3. Established Baseline (Reference)

Graphical Representations Color Vector Graphic

Local Average Values (Hue-Angle Groups)

leducation.org

16 Local Color Fidelity($R_{f,hj}$) 16 Local Chroma Shift ($R_{cs,hj}$) 16 Local Hue Shift ($R_{hs,hj}$)

Sample Specific Values Color Sample Fidelity (*R*_{f,CES*i*})

Yep – That's 99 Color Samples of Awesome.

GES 1	CES 2	CES 3	CES.4	CES 5	CES 6	CES 7	CES 8
CES 9	CES 10	CES-11	CES 12	CES 13	CES 14	CES 15	CES 16
CES 17	CES 18	CES 19	CE5 20	GES 23	CES 22	C45.23	CA5 24
CES 25	CLE JR	CES 27	CE5 28	CES 29	CES 30	OES AL	CES 32
	CES 34	CES 35	CES 36	CES 37	COLTS	CES 39	CE5 40
CES 43	CES 42	CES-43	CES 44	CES 45	CES 46	CES 47	CES 48
CES 49	CES 50	CE5 51	CES 52	CES 53	CE3 54	CE5 95	CES 56
CES 57	CES 58	CES 50	CES 647	CES 61	CES 62	CES 63	CES 64
CES 65	CES 66	CES 67	CES 68	CES 69	CES 70	CES 71	CE5 72
CES 73	CES 74	CES 75	CES 76	CES 77	CES 78	CES 79	CES 80
CES 81	CE3 84	CE5 83	CE5 84	CES 85	CES 86	CES 87	CES BB
CES 89	CES 90	CES 93	CES 92	CES 93	CES 94	CES 95	CES 96
CES 97	CES 98	CES 99					

(CIE F4)

Average Color Fidelity

On average, how similar are colors rendered by the test source to the same colors rendered by the reference illuminant?

- Average length of arrows
- Does not capture direction of shift

TM-30 Fidelity Index (*R*_f)

40

Range is 0 to 100, where 100 is an exact match.

```
TM-30-18 R_f = CIE 224 R_f
(pending final approval)
```

This is really a sphere, but it's compressed to 2D for ease of visualization!

Reference Illuminant
 A Test Source

Average Gamut Area

Approximation of average change in chroma.

- Average area enclosed by samples
- Does not capture how changes vary for different hues

TM-30 Gamut Index (R_{g})

Range depends on $R_{\rm f}$; about 80 to 120 at $R_{\rm f}$ = 80.

40

This is actually compressed to 2D for calculations!

Color Vector Graphic

Gamut Shape = The average pattern of color shifts across hues.

Local Chroma Shift

13% 11%

0.00

-0.18

-0.27

-0.20

57 60

8

For a given range in hue angle, what is the average relative change in chroma. Values in percentages.

Local Hue Shift

For a given range in hue angle, what is the average relative change hue. Values in radians.

Local Color Fidelity

For a given range in hue angle, what is the average magnitude of change (3D). Values 0 - 100.

(Note: TM-30-18 Format is Pending Approval)

GES 1	CES 2	CES 3	CES.4	CES 5	CES 6	CES 7	CES 8
CES 9	CES-10	CES 11	CES 12	CES 13	CES 14	CES 15	CES 16
CES 17	CES 18	CES 19	CES 20	GES 21	CES-22	C65.23	985 Z4
CES 25	C65.25	CES 27	CES 28	CES.29	CES 30	CES 41	CES 32
CK5-52	CES 34	CES 35	CES 36	CES 37	CES 30	CES 39	CES 40
CE5 43	CES 42	CES 43	CES 44	CES 45	CES 46	CES 47	CES 4B
CES 49	CES 50	CE5 51	CES 52	CES 53	CE3 54	CE5 55	CES 56
CES 57	CES 58	CE5 50	CK2.047	CES 61	CES 62	CES 63	CES 64
CES 65	CES 66	CE5 67	CES 68	CES 69	CES 70	CES 71	CE5 72
CES 73	CES 74	CES 75	CES 76	CES 77	CES 78	CES 79	CES 80
CES 81	C65 62	CE5 83	CES 84	CES 85	CES 86	CES 87	CES 80
CES 89	CES 90	CES #1	CES 92	CES 93	CES 94	CE5 95	CES 96
CES 97	CES 98	CES 99					

Colors are for visual orientation purposes only. Created with the IES TM-30 Calculator Version 2.0.

TM-30-18 Annex D Simple Report (Pending Approval)

TM-30-18 Annex D Intermediate Report (Pending Approval)

leducation.org

TM-30-18 Annex D Full Report (Pending Approval)

Demo Time Our "Reference"

Demo Time Under/ Over Saturation

Demo Time Hue Shift

Understand the limitations of the tool:

- 1. Global average values (R_f, R_g) are simple, but have big limitations
 - When used alone (or as a pair) they are not closely related to any subjective aspect of color quality.
- 2. IES TM-30 is not an RP, so it doesn't tell you what to do with or how to use the info
- 3. IES TM-30, like all measures of color rendition, does not consider:
 - Intensity (illuminance)
 - Chromaticity
 - Whiteness (OBAs, OWAs, FBAs, etc.)
 - Scene composition
 - Other contextual factors

Demo Time Same R_f

Demo Time Same $R_{\rm f}$ and $R_{\rm g}$

Note graphics shown are DRAFT IES TM-30-18, pending approval.

Note graphics shown are DRAFT IES TM-30-18, pending approval.

21

Understand the limitations of the tool:

- 1. Global average values (R_f , R_g) are simple, but have big limitations
 - When used alone (or as a pair) they are not closely related to any subjective aspect of color quality.

- 2. IES TM-30 is not an RP, so it doesn't tell you what to do with or how to use the info
- 3. IES TM-30, like all measures of color rendition, does not consider:
 - Intensity (illuminance)
 - Chromaticity
 - Whiteness (OBAs, OWAs, FBAs, etc.)
 - Scene composition
 - Other contextual factors

TM-30 is not an RP!

Establishing Criteria:

- 1. Experimental
 - Pros: Direct response from users; can vary light source properties in many ways
 - Cons: Does apparatus reflect real-world applications?
- 2. Experience
 - Pros: Real-world applications
 - Cons: Takes a long time to build; chicken and the egg; limited light sources
- 3. Benchmarking
 - Pros: Fast; cheap; relatively straightforward
 - Cons: Dependent on existing sources/those used for benchmarking; any limitations may be carried forward

Criteria Meaning:

- Minimum acceptability versus top performers
- Criteria in context?

leducation.org

https://energy.gov/eere/ssl/color-rendition

leducation.org

https://energy.gov/eere/ssl/color-rendition

leducation.org

https://energy.gov/eere/ssl/color-rendition

Composite (Condition Mean) Specification Criteria:

A: (> 89% acceptable) IES $R_f \ge 78$ IES $R_g \ge 100$ $-1\% \le IES R_{cs,h1} \le 15\%$

B: (> 84% acceptable) IES $R_f \ge 78$ IES $R_g \ge 98$ $-7\% \le IES R_{cs,h1} \le 15\%$

http://journals.sagepub.com/doi/abs/10.1177/1477153517725974 https://energy.gov/eere/ssl/color-rendition

Composite (Condition Mean) Specification Criteria:

A: (> 89% acceptable) IES $R_f \ge 78$ IES $R_g \ge 100$ $-1\% \le IES R_{cs,h1} \le 15\%$ B: (> 84% acceptable) IES $R_f \ge 78$ IES $R_g \ge 98$ $-7\% \le IES R_{cs,h1} \le 15\%$

http://journals.sagepub.com/doi/abs/10.1177/1477153517725974 https://energy.gov/eere/ssl/color-rendition

16 x Local Color Fidelity

Zhang F, Xu H and Feng H. Toward a unified model for predicting color quality of light sources. *Applied Optics*. 2017; 56: 8186-95.

- 0.04866 ψ + 0.000566 $R_{f} \star \psi$

Esposito T. Modeling color rendition and color discrimination with average fidelity, average gamut, and gamut shape. [Doctoral Dissertation] Architectural Engineering. University Park, PA: Penn State University, 2016.

Understand the limitations of the tool:

- 1. Global average values (R_{f} , R_{g}) are simple, but have big limitations
 - When used alone (or as a pair) they are not closely related to any subjective aspect of color quality.
- 2. IES TM-30 is not an RP, so it doesn't tell you what to do with or how to use the info

3. IES TM-30, like all measures of color rendition, does not consider:

- Intensity (illuminance)
- Preferred/Neutral Chromaticity
- Whiteness (OBAs, OWAs, FBAs, etc.)
- Scene composition
- Other contextual factors

Ok, so here in the real world...

(Wait, you said we were going to talk about the real world...)

Expected Values: $R_{\rm f}$ and $R_{\rm g}$

Theoretical (a computer came up with these)

Real (Experimental) (technically possible today, but not available commercially)

Commercial (what's on the market today)

Expected Values: Local Chroma Shift

Demo Time Is that local chroma shift good or bad?

Note graphics shown are DRAFT IES TM-30-18, pending approval.

Expected Values: Local Hue Shift

.....ucation

Commercially-available products in TM-30-15 library:

- A. High Fidelity (R_f90+) PC LED Some Hybrid (PC+R) LED Neodymium Incandescent Incandescent/halogen Some Specialty HID
- B. Additional PC-LED (*R*_f 85+) Additional Hybrid LED (PC+R)

New products beginning to emerge...

IES TM-30-18 is pending approval.

New products beginning to emerge...designed with the help of TM-30-15 (TM-30-18 data shown is Pending Approval)

leducation.org

http://www.focalpointlights.com/PreferredLight

New products beginning to emerge...designed with the help of TM-30-15 (TM-30-18 data shown is Pending Approval)

Conventional chip-on-board LED lighting (left) and "D-series Special Color".

leducation.org

https://news.samsung.com/global/samsung-introduces-chip-on-board-led-packages-optimized-for-commercial-lighting

New products beginning to emerge...designed with the help of TM-30-15 (TM-30-18 data shown is Pending Approval)

Conventional chip-on-board LED lighting (left) and "D-series Special Color".

https://news.samsung.com/global/samsung-introduces-chip-on-board-led-packages-optimized-for-commercial-lighting

Your Context May Vary

Until now Color Rendering has meant Color Fidelity

leducation.org

Until now Color Rendering has meant Color Fidelity.

With the information provided by TM-30 *Color Rendering* means we are considering the interplay of:

Color Fidelity Chroma Shift Hue Shift

Perceptual Implications of the above

In many applications *Color Fidelity* may not be as important as *Chroma Shift* and/or *Hue Shift*.

.....ucation

leducation.org

IES TM-30-18 is pending approval.

.....ucation

IES TM-30-18 is pending approval.

So what's a specifier to do?

- How do I get TM-30 info from manufacturers?
 - Right now you probably have to ask for it.
 - Ask for it every time from every manufacturer. Eventually they'll start to include it on their cut sheets (won't they?).

So what's a specifier to do?

- How do I write TM-30 into a spec?
 - Thresholds and ranges are still being researched. Here are a few guides.

.....ucation

Composite (Condition Mean) Specification Criteria:

A: (> 89% acceptable) IES $R_f \ge 78$ IES $R_g \ge 100$ $-1\% \le IES R_{cs,h1} \le 15\%$

B: (> 84% acceptable) IES $R_f \ge 78$ IES $R_g \ge 98$ $-7\% \le IES R_{cs,h1} \le 15\%$

IES TM-30-18 is pending approval.

So what's a specifier to do?

A: (> 89% acceptable)B: (> 84% acceptable)IES $R_f \ge 78$ IES $R_f \ge 78$ IES $R_g \ge 100$ IES $R_g \ge 98$ -1% \le IES $R_{cs,h1} \le 15\%$ -7% \le IES $R_{cs,h1} \le 15\%$

US DOD Unified Facilities Criteria UFC 4-510-01 (November 2017)

	IES TM-30-18 is pending approval.
IES R _f	≥ 80 (TM-30-18 = 82)
IES R_{g}	97 to 110
IES R _{f.h1}	≥ 78
IES R _{cs,h1}	-9% to 9%

Questions?

This concludes The American Institute of Architects Continuing Education Systems Course

