

Designers Light Forum

Guidelines for Specifying Light Fixtures in WELL projects; What to Consider and What to Avoid

Shahrzad Abtahi, LC, WELLAP, LEEDAP, Assoc IALD Director of Lighting Design at Lightcraft

March 13th 2018

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

LE: ucation

Learning Objectives

At the end of the this course, participants will be able to:

- 1. Attendees will be able to evaluate intent of lighting features in the WELL building standard.
- 2. Attendees will be able to understand lighting credits and how to achieve them.
- 3. Attendees will be able to identify key factors contributing to visual comfort and circadian lighting.
- 4. Attendees will learn about critical factors needs to be considered, before specifying lighting fixtures.

What is WELL V2?

WELL Concepts

Copyrights /IDE by Universitional WELL Statisting Institute PRC. AV Hypers Learning.

Scoring and Certification Levels

Projects must achieve all preconditions, as well as a certain number of points to earn different levels of certification:

•WELL Core Certification: 40 points.
•WELL Certification Silver: 50 points.
•WELL Certification Gold: 60 points.
•WELL Certification Platinum: 80 points.

Projects must earn a minimum of two points per concept. Projects may earn no more than 12 points per concept.

WELL Certification Process

Why Light matters?

Copyright© 2017 by International WELL Building Institute PBC. All rights reserved.

WELL aims to provide a lighting environment that reduces circadian phase disruption, improves sleep quality and positively impacts mood and productivity.

Circadian Rhythm

Internal clock that keeps the body's hormones and bodily processes on a roughly 24-hour cycle, even in continuous darkness.

Humans are diurnal, meaning they are innately prone to wakefulness during the day and sleepiness at night. Light exposure stimulates the circadian system, which starts in the brain and regulates physiological rhythms throughout the body's tissues and organs, such as hormone levels and the sleep-wake cycle.

copyright: © The Nobel Committee for Physiology or Medicine, Illustrator: Mattias Karlén

IPRGCs and Circadian Clock

Graphics borrowed from: https://www.pointsdevue.com/

WELL V2 and Lighting features

What is sDA?

sDA_{300,50} 48.2%

What is EML?

Equivalent Melanopic Lux = Photopic Lux x Melanopic Ratio

https://lightinganalysts.com/entraining-circadian-rhythms/

Limit ucation How to Calculate Melanopic Ratio?

USE IWBI spreadsheet published by IWBI (Appendix L1)

λ (nm) 🔽 Lam	ip data 💌	circadian 🔻	visual 💌	lamp*c 📃 💌 lam	np*v 💌	Source	Melanopic Ratio
380	0.089	0.0009	0.0000	0.0001 3.5	56E-06	Sample Fluorescent 4000 K	0.588
385	0.088	0.0017	0.0001	0.0001 5.2	27E-06		Click here for data input
390	0.087	0.0031	0.0001	0.0003 1.0	04E-05	Instructions	
395	0.809	0.0059	0.0002	0.0048 0.0	000176	1. Select built-in sample source, or use	er-entered source (above).
400	2.477	0.0114	0.0004	0.0283 0.0	000991	2. For user data, paste lamp spectral p	ower distribution (5 nm increments) into Data sheet.
405	1.068	0.0228	0.0006	0.0244 0.0	000684	3. To add more user sources, insert co	lumns to the left of User 2 on the Data sheet.
410	0.848	0.0462	0.0012	0.0391 0.0	001026	4. Multiply the Melanopic Ratio by meas	sured or modeled lux to calculate equivalent melanopic lux.
415	1.449	0.0795	0.0022	0.1151 0.0	003158		
420	2.377	0.1372	0.0040	0.3262 0.0	009509		
425	11.754	0.1871	0.0073	2.1991 0.0	085804		
430	22.863	0.2539	0.0116	5.8042 0.2	265214		
435	6.404	0.3207	0.0168	2.0538 0.1	107851		
440	4.287	0.4016	0.0230	1.7215 0.0	098595		
445	4.122	0.4740	0.0298	1.9537 0.1	122826		
450	4.230	0.5537	0.0380	2.3422 0.	.16074		
455	3.901	0.6297	0.0480	2.4562 0.1	187239		
460	3.572	0.7080	0.0600	2.5289 0.2	214299		
465	3.188	0.7852	0.0739	2.5031 0.2	235579		
470	3.132	0.8603	0.0910	2.6945 0.2	284952		
475	6.117	0.9177	0.1126	5.6133 0.6	688722		
480	10.727	0.9656	0.1390	10.3576 1.4	491204		
485	9.566	0.9906	0.1693	9.4766 1.6	619582	380 400 420 440 460 480 500	520 540 560 580 600 620 640 660 680 700 720
490	6.190	1.0000	0.2080	6.1900 1.2	287635	Lamp	data —— circadian —— visual
495	3.318	0.9920	0.2586	3.2917 0.8	858087		
500	1.540	0.9660	0.3230	1.4875 0.4	497402		
505	1.211	0.9223	0.4073	1.1167 0.4	493141	INTERNATIONAL	
510	0.827	0.8629	0.5030	0.7135 0.4	415938	BUILDING	
515	0.826	0.7852	0.6082	0.6484 0.5	502252	INSTITUTE™	
520	0.934	0.6996	0.7100	0.6535 0.6	663221		
525	5.608	0.6094	0.7932	3.4177 4.4	448349	$\overline{}$	
530	29.531	0.5193	0.8620	15.3355 25.	.45544		
535	75.415	0.4325	0.9149	32.6196 68.	.99355		
540	61.275	0.3517	0.9540	21.5509 58.	.45637		
545	13.643	0.2791	0.9803	3.8081 13.	.37375		
550	3.533	0.2157	0.9950	0.7621 3.5	514914		
555	1.392	0.1621	1.0000	0.2255 1.3	391525		
560	1.199	0.1185	0.9950	0.1421 1.1	193033		
565	6.378	0.0843	0.9786	0.5380 6.2	241446		

Paste lamp spectral power distribution (5 nm increments into Data sheet)

Multiply the melanopic ratio by measured or modeled lux to calculate melanopic lux

Limit ucation How to Calculate Melanopic Ratio?

USE IWBI spreadsheet published by IWBI (Appendix L1)

- 1. Select built-in sample source, or user-entered source (above).
- 2. For user data, paste lamp spectral power distribution (5 nm increments) into Data sheet.
- 3. To add more user sources, insert columns to the left of User 2 on the Data sheet.
- 4. Multiply the Melanopic Ratio by measured or modeled lux to calculate equivalent melanopic lux.

Source User 2 6000K LED

Instructions

- 1. Select built-in sample source, or user-entered source (above).
- 2. For user data, paste lamp spectral power distribution (5 nm increments) into Data sheet.
- 3. To add more user sources, insert columns to the left of User 2 on the Data sheet.
- 4. Multiply the Melanopic Ratio by measured or modeled lux to calculate equivalent melanopic lux.

EML assuming getting 350 Lux = 350 x 0.469 = 316 EML

leducation.org

EML assuming getting 350 Lux = 350 x 0.469 = 164 EML

Limit ucation How to Calculate Melanopic Ratio?

USE IWBI spreadsheet published by IWBI (Appendix L1)

2700K LED	
	2700K LED

Instructions

- 1. Select built-in sample source, or user-entered source (above).
- 2. For user data, paste lamp spectral power distribution (5 nm increments) into Data sheet.
- 3. To add more user sources, insert columns to the left of User 2 on the Data sheet.
- 4. Multiply the Melanopic Ratio by measured or modeled lux to calculate equivalent melanopic lux.

Source		Melanopic Ratio
User 2	6000K LED	0.903
		Click here for data input

- 1. Select built-in sample source, or user-entered source (above).
- 2. For user data, paste lamp spectral power distribution (5 nm increments) into Data sheet.
- 3. To add more user sources, insert columns to the left of User 2 on the Data sheet.
- 4. Multiply the Melanopic Ratio by measured or modeled lux to calculate equivalent melanopic lux.

EML assuming getting 350 Lux = $350 \times 0.469 = 316 \text{ EM}_{-}$

EML assuming getting 350 Lux = 350 x 0.469 = 164 EML

FIXTURE SPECIFICATION ALERT!

- Look for the melanopic ratio on the cut sheet (Rarely found!)
- Specify fixtures from manufactures willing to provide their SPD in Excel format in 5nm increments.

What is ASE?

ASE_{1000,250} 42.7%

What is UGR?

The UGR value is a dimensionless parameter which provides information about the degree of psychological glare of a lighting installation in an indoor space. UGR values are defined in steps within a scale of 10 to 30.

UGR = 8 log
$$\left[\frac{0.25}{L_b}\sum_{b}\left(\frac{L^2\omega}{p^2}\right)\right]$$

FIXTURE SPECIFICATION ALERT!

• Look for the UGR on the cut sheet (Mostly found on European manufacturer!)

WELL recommendation:

Unified Glare Rating (UGR) values are met as per the below conditions:

Luminaires installed at a height of 5 m [16 ft] or lower meet UGR of 19 or lower.

Luminaires installed at a height greater than 5 m [16 ft] meet UGR of 22 or lower.

Shielding recommendation by WELL V2

Limit ucation Shielding recommendation by WELL V2

PHOTOMETRIC CURVE

LUMINANCE DATA (cd/m ²)											
-	Horizontal Angles										
Vertical Angle	0	45	90								
45	21381	19243	17399								
55	18360	16087	14179								
65	15173	13199	11472								
75	11683	10273	8863								
85	7776	7178	6580								

PHOTOMETRIC CURVE

LUMINANCE DATA (cd/m²) Horizontal Angles Vertical 0 45 90 Angle 14432 45 16035 13050 55 13770 12066 10634 65 11380 9899 8604

8762

5832

75

85

7704

5383

6647

4935

Luminaire Lumens: 1000 lm/ft Input Watts: 10.4 W/ft Efficacy: 96 lm/W

IES FILE: BRLED-1000-80-40-FL.IES TESTED ACCORDING TO IES LM-79-2008 15 Deg Shielding required

Luminaire Lumens: 750 lm/ft Input Watts: 7.5 W/ft Efficacy: 100 lm/W

IES FILE: BRLED-750-80-40-FL.IES TESTED ACCORDING TO IES LM-79-2008

Photometrics

High Efficiency Lens

Test #	ITL86985
Catalog #	EX1HE-840-4
umens	1726 Lm
Watts	19.9 W
Efficacy	87 LPW

Luminance Data (cd/sq.m)

Angle In	Average	Average	Average
Degrees	0-Deg	45-Deg	90-Deg
45	14181	11775	10034
55	12136	9795	8273
65	10063	8103	6991
75	8216	6745	5967
85	6677	5393	5136

450 Lm/ft

450 Lm/ft

Luminance Data (cd/sq.m)

Angle In	Average	Average	Average		
Degrees	0-Deg	45-Deg	90-Deg		
45	7804	6836	6053		
55	6951	5928	5151		
65	6066	5064	4344		
75	4911	4071	3568		
85	3490	2867	2742		

FIXTURE SPECIFICATION ALERT!

- Look for the fixtures with luminance data report on the cut sheet
- Ask for the luminance data from manufacturer

Photometrics

Satine Wet Lens

Test #	ITL86499
Catalog #	EV3-WET-N-840-4
Lumens	1338 lm
Watts	18.8 W
Efficacy	71 LPW

Candela Distribution

Vert	Horizontal Angle								
Angle									
	0	22.5	45	67.5	90				
0	562	562	562	562	562				
5	559	558	558	557	557				
10	547	545	544	541	540				
15	529	525	522	518	514				
20	504	495	491	484	479				
25	471	461	453	444	438				
30	432	423	414	401	395				
35	391	382	371	357	351				
40	347	339	327	313	307				
45	303	296	284	271	265				
50	259	254	243	231	225				
55	216	212	204	194	190				
60	175	173	166	159	156				
65	137	137	132	127	125				
70	101	103	101	98	97				
75	68	72	72	72	73				
80	41	45	49	51	52				
85	18	24	30	34	35				
90	2	8	15	19	21				

Luminance Data (cd/sq.m)

Angle In Degrees	Average 0-Deg	Average 45-Deg	Average 90-Deg
45	3516	3122	2855
55	3086	2690	2436
65	2635	2277	2074
75	2131	1863	1780
85	1625	1615	1669

L06- Visual Balance

Manage Brightness

FIXTURE SPECIFICATION ALERT!

- Look for the fixtures with published CRI or TM-30 report
- Ask for the R9 value from the manufacture if you are planning to specify CRI 80

CRI: 96.7 (R1-R8)

RIR	(I R values, only R1-R8 are used to calculate final CRI value													
R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15
96.9	99.4	93.7	93.3	97.1	98.7	97.1	97.3	98.5	97.4	90.4	93.7	97.7	95.5	98.2

TM30 C values, 16 binned values out of total of 99 C values

C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16
96.2	97.1	96.8	96.7	95.3	93.2	94.5	94.0	95.5	96.9	95.5	93.3	95.8	93.9	94.2	90.8

CQS Q values															
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15
	96.3	97.8	94.5	97.1	93.0	90.6	94.7	97.6	96.5	97.2	96.7	95.5	95.5	97.6	97.7

Color parameters

Color temperature	Color rendering index	Red component	Color fidelity	Color gamut	Color quality scale	Color coordinate cie 1931	Color coordinate cie 1931	Color coordinate	Color coordinate	Color diviation from black body
сст	CRI	CRI R9	TM30 Rf	TM30 Rg	CQS	х	У	u	v	Δuv
3001 K	96.7	98.5	95.3	103.5	95.2	0.437	0.405	0.251	0.348	0.0003

Conclusion

QUESTIONS?

Shahrzad@lightcraftgroup.com www.lightcraftgroup.com

T: 617-535-8226

This concludes The American Institute of Architects Continuing Education Systems Course

