

Designers Light Forum

Assessing Connected Lighting Systems: What Works and How do we Know

Ruth Taylor, Pacific Northwest National Laboratory Dan Blitzer, Practical Lighting Workshop

March 12, 2019

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

At the end of the this course, participants will learn:

- 1. How installed lighting performance varied among the systems and from predictions
- 2. How well daylight and occupancy sensors performed
- 3. User operation of, and reaction to, different wall controls
- 4. Challenges in the measurement and assessment of installed systems

leducation.org

What We'll Cover Today

- NGLS Evaluations to Date
 - Evaluated Systems
 - Installation and Configuration Evaluation Recap
- Current Performance Evaluations
 - Wall Controls
 - Occupancy Sensing
 - Configuration vs. Reconfiguration
 - Configuration Methods
 - Daylight Sensing
- Next Steps

NGLS Partners

INTERNATIONAL ASSOCIATION OF LIGHTING DESIGNERS

BUILDING TECHNOLOGIES OFFICE

Steering Committee and Advisors

Melanie Taylor, IALD, LEED AP Vice President, Lighting Design WSP

Craig Bernecker, Ph.D., FIES, LC Founder and Director The Lighting Education Institute

Charles Thompson, AIA IALD LC LEED AP IESNA ARCHILLUME LIGHTING DESIGN

Avi Mor, LEED AP, IESNA, Lighting Designer LIGHTSWITCH ARCHITECTURAL CHICAGO, LLC

Aram Ebben, IALD, LEED AP BD+C Principal | Director of Lighting Design exp, U.S. Services Inc.

Mary Matteson Bryan, P.E. Energy Engineering

Chris Wolgamott

ergy Engineering

Northwest Energy Efficiency Alliance (NEEA) **Jeff Brown**, IALD Lighting Specialist Power Design Engineering

Nancy Clanton, PE, FIES, IALD, LC, LEED AP President Clanton & Associates, Inc.

Ron Gibbons, Ph.D, FIES Virginia Tech Transportation Institute (VTTI)

Chip Israel, FIALD, MIES, LEED® AP, LC CEO & FOUNDER Lighting Design Alliance

Mike Lambert, IES, LC Senior Lighting Designer KCL Engineering

Nathan Mitten, Ph.D. Senior Manager of Property Standards & Improvements Kimco Realty Corporation

Dan Blitzer, FIES Practical Lighting Workshop

- Gabe Arnold DLC, NLC
- Dave Bisbee SMUD
- Peter Jacobson Con Edison
- Levin Nock DLC, NLC
- Michael Poplawski PNNL/DOE

W Next Generation LIGHTING SYSTEMS

Understanding NGLS

Evaluating Configuration Complexity

To find the real 'pressure points', *people* need to observe and evaluate the *people* installing and configuring the system in real time, without assistance - it just can't be done in a demonstration, mock-up, or testing lab.

NGLS Initial Focus

- Luminaire and control systems that are:
 - Marketed as "easy" to install and configure
 - Intended for contractor setup and configuration without prior training
 - Configurable without manufacturer assistance
 - No lighting designer involved

We had to start with the most basic systems to develop our evaluation protocols and procedures and come away with results and recommendations that are tangible and actionable.

Living Lab

Next Generation

NGLS to Date

NGLS Indoor Timeline

Control Performance Requirements

- 1. Vacancy control (manual on/auto off) of two zones with a time out period of 5 minutes.
- 2. Manual continuous dimming of the same two zones indicated in item 1. Minimum dimming level of each zone shall be $\leq 10\%$ of lumen output.
- 3. **Daylight harvesting** to maintain task plane illumination at the current level provided by the electric lighting (whether full output, task-tuned, or manual dimmed).
- 4. Field-adjustable high-end trim to lower maximum system light output. System shall be delivered with high-end trim set at 100%.
- 5. Control settings shall be adjustable by the user **without factory** assistance.

Lighting Performance Requirements

Task Plane Illumination	Illuminance Uniformity	Maximum Luminance Ratio		
Average initial at full power	Average to minimum across work plane	Between task and immediate background surfaces	Between task and distant background surfaces (ceiling, walls, floor)	
45 – 55 fc	2:1	3:1	10:1 or 1:10	

Connected Lighting Power Density of not more than 1.0 w/SF

Evaluated System Luminaires

- Luminaires
 - recessed 2x2s, pendants
- Retrofit Kits
 - recessed 2x4s, 2x2s, 1x4s
- Efficacy range 94 to 140 lm/W
- Measured Illuminance 30 57 fc
- Wattage range 24 to 70 watts
- Calculated Power Density 0.36 0.81 W/sf

Evaluated System Approaches

Entries can be categorized by how manufacturers approached:

- 1) System Architecture
- 2) Initial Start Up
- 3) Configuration Tools
- 4) Wall Controls
- 5) Documentation and Instructions

Wall Control Performance

Wall Controls

Pre-configured Rocker Switch (4 Systems)

Site Configurable Rocker Switch (2 Systems)

Pre-configured Multi Button Switch (3 Systems)

Site Configurable Multi Button Switch (2 Systems)

Immediate Feedback

Delayed visual response when pressing the switch is a concern, users need immediate feedback

Switch Arrangement

Switch arrangement that mimics associated fixture locations could be helpful

Simple is Better

If functions of the wall controls are not obvious, users will likely not know that a particular function is even possible

Dimming function is more obvious if there is some marking on the switch

Younger generations are accustomed to touch screens, press and hold is not intuitive

Next Generation

Occupancy Sensor Performance

Occupancy Sensing Evaluation

- Initial Evaluation:
 - Hard to distinguish between configuration and performance
 - Is it how the system is programmed or a hardware issue?
 - Hard to differentiate between sensitivity vs. coverage issues
- Second Evaluation Process:
 - Reset all systems to NGLS spec
 - Protocols for testing:
 - Vacancy
 - Sensitivity
 - Coverage

9 passed, 3 failed

Testing Occupancy Sensitivity

• Major, minor and micro movement

Rm 1106

Assuming 10' mounting height for sensor. Coverage = 6' radius (100 sf)

Entire room is covered.

С

Sensitivity Chair Location

Coverage Chair Location

Rm 511

Assuming 10' mounting height for sensor. *Coverage = 16' radius*

Entire room is covered.

Sensitivity Chair Location

С

S

Rm 612

S

Coverage for each sensor = 16' radius

Two coverage areas shown for upper luminaires. Other two not shown, as it is clear the entire room will be covered by the 4 sensors.

Sensitivity Chair Location

Coverage Chair Location

Configuration vs. Reconfiguration

System Architecture

	Least Complex (7)	Moderately Complex (2)	Most Complex (3)
Components	Luminaire-integrated sensor and control	Luminaire-integrated sensor and control	Remote mounted sensor and control
Components	Wall switch	Wall switch	Wall switch
		Local area network device	
Connection	Wireless	Wireless	Wired Wireless PoE

Initial Startup Approach

Pre-configured out-of-the box operation	Onsite pairing of luminaires to wall switches Factory-set default operational settings	Onsite pairing of Iuminaires to wall switches Various additional steps Factory-set default operational settings	Onsite pairing of luminaires to wall switches Onsite configuration of external daylighting and occupancy sensors
2	4	3	2

Configuration Tools

Handheld Tool

Phone App (8)

Computer Front-end (3)

Reconfiguration

- How do you figure out if a system is performing correctly?
- How do you change settings if it's not?
- Have you downloaded the app? Is it the latest version? Who has the password?
- Do the instructions you have match the new version of the app?
- Vocabulary!
- What if a switch breaks?
- What if you need to apply a firmware update?

Vocabulary

- Site, building, project
- Room, group, zone
- Device, fixture, switch, sensor, node
- Hub, bridge, gateway
- Discover, find
- Profile, scene, behavior
- Configure, program, adjust
- Write, save, apply, confirm, push
- Timeout period, hold time, prolong time

Next Generation

Configuration Methods

One-way Communication

Two-way Communication

Hub and Phone App

Laptop/Tablet + Dongle

Upcoming Daylighting Evaluation

- Challenging to determine if daylight response is functioning properly. Visual evaluation is not reliable. Where should illuminance measurements be made? Are luminance measurements better?
- Manufacturers appear to take different approaches to default daylighting algorithms. Some have more aggressive dimming, capturing more energy savings. Some have conservative dimming, lower energy savings but less noticeable to occupants.
- What is the appropriate level of commissioning? Can NGLS inform an effective, easily replicable procedure?

Next Steps

- Updates to currently installed systems
- New indoor evaluations at Parsons
- Outdoor evaluations parking lot systems, Virginia Tech Transportation Institute

Thanks!

Questions?

This concludes The American Institute of Architects Continuing Education Systems Course

Participating Manufacturers

Installation One – July 2017

Company	Control System	Luminaire
Lumenwerx	Magnum	Reven SIB
Selux	Easy Sense	M36 D-1
Crestron	Zum	Starfire Versalux D-I
Philips Lighting	SpaceWise DT	Sona
RAB Lighting	RAB LightCloud	Swish 2x2
Cree	SmartCast	CR22
Nextek Power Systems	Sky Control	Independence iLED R Series

Installation Two – January 2018

Company	Control System	Retrofit Kit
Philips Lighting	SpaceWise DT	EvoKit Troffer Retrofit Kit
Lutron Electronics	Vive	Orion Ison Retrofit Modular
Acuity Brands	nLIGHT AIR	BLT Relight Series Kit
Eaton	WaveLinx	Metalux Cruze LED Retrofit Kit
LG Electronics	Sensor Connect	Simple Choice Retrofit Kit

Summary of System Performance

	# of Systems Each Rating		
Installation and Configuration Evaluation	Good	Fair	Poor
Ease of Luminaire/Kit Installation	6	3	3
Ease of Control Component Installation	4	4	4
Ease of Initial Configuration	2	5	5
Ease of Adjustment of Control Settings	5	4	3
Ability to Install without Manuf Assistance	6	3	3
Usability of Installation Instructions	0	6	6

Operation Evaluation	Good	Fair	Poor
Operation to Specification	5	2	5
Ability to Operate without Manuf Assistance	5	3	4
Limited Punch List Items	5	1	6