

Designers Lighting Forum

Decarbonization in Lighting - the Hotspots

Speakers

Leela Shanker,	Founder, Life Cycle Assessment Incubator, GreenLight Alliance and
	Sustainability Director, Design Lab, WAP
James Salazar,	Life Cycle Assessment Expert Analyst,
	Athena Sustainable Materials Institute and WAP Sustainability
William Paddock,	Co-Founder and Managing Director
	WAP Sustainability

Tuesday March 20

leducation.org

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of

handling, using, distributing, or dealing in any material or product.

leducation

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

At the end of this course, participants will be able to:

1. Outline current status of metrics and approaches to measuring the carbon footprint of luminaires and lighting strategies

2. Outline relative carbon impact of 5 key architectural luminaires

3. Understand practical issues in using life cycle assessment data to set decarbonization targets for lighting

4. Compare decarbonization initiatives progressing in other construction disciplines internationally

leducation.org

Abstract:

In New York City, 2024 marks the introduction of financial penalties under Local Law 97 for exceeding building C02 emission limits; providing legislative and commercial imperatives for carbon footprint measurement. How does lighting contribute to achieving decarbonization goals of governments and corporate entities under legislation and "Net Zero" challenges set by construction partners in other disciplines, such as Architecture 2030 and MEP2040? This session presents the first results of the Life Cycle Assessment Incubator of the GreenLight Alliance and IALD, an industry-led pilot to develop a consistent framework for measuring embodied and operational carbon of five key architectural luminaires.

leducation.org

OVERVIEW

Part I	Current Commercial Context	[15 min]
Part II	Lighting Metrics	[10 min]
Part III	Industry EPD results	[15 min]
Part IV	Future Directions	[5 min]
Part V	Q&A	[15 min]

James Salazar LCA Analyst, Athena and WAP Sustainability Leela Shanker Founder, LCA Incubator, GreenLight Alliance and Design Lab, WAP Sustainability William Paddock, Co-Founder and Managing Director WAP Sustainability

Speaker background: Leela Shanker

Speaker background: James Salazar

[update image]

Speaker background: William Paddock

[update image]

Part I	Current Context
Part II	Lighting Metrics
Part III	Industry EPD results
Part IV	Future Directions
Part V	Q&A

SECTION CONTENT OVERVIEW

Legislation

- Federal, State, Local Decarbonization legislation developments
- New York 2024 introduction of Local Law 97 financial penalties
- types of buildings/ owners

Industry Moves

 Other disciplines - New York industry association developments -AIA Committee on the Environment and Decarbonization Subcommittee, Carbon Leadership Forum NY Chapter

Commercial

Corporate Net Zero protocols - LendLease introduced 2023 Scope
 3 Emissions protocol and are reviewing procurement policies

leducation.org

https://ukgbc.org/news/scaling-climate-change-mitigation-where-do-net-zero-buildings-fit-in/

LEDucation. Trade Show and Conference

OFFICE OF THE FEDERAL CHIEF SUSTAINABILITY OFFICER COUNCIL ON ENVIRONMENTAL QUALITY

LEGISLATION FEDERAL

Net-Zero Emissions Buildings by 2045, including a 50% reduction by 2032

Why focus on reducing emissions from buildings?

In the United States, residential and commercial buildings represent <u>35 percent of carbon dioxide</u> <u>emissions</u>. Commercial and government buildings <u>cost \$190 billion</u> to power each year. With eighty percent of all existing U.S. buildings expected to remain in service in 2050, electrifying existing buildings is essential to achieving President Biden's climate goals.

https://www.sustainability.gov/buyclean/

leducation.org

LEGISLATION STATE

NOTE:

Leela and Will compare California with Massachusetts and NYSERDA / NY STATE developments

https://www.dgs.ca.gov/PD/Resources/Page-Content/Procurement-Division-Resources-List-Folder/Buy-Clean-California-Act

LEGISLATION LOCAL

§ 28-320.6 Penalties. An owner of a covered building who has submitted a report pursuant to section 28-320.3.7 which indicates that such building has exceeded its annual building emissions limit shall be liable for a civil penalty of not more than an amount equal to the difference between the building emissions limit for such year and the reported building emissions for such year, multiplied by \$268.

https://www.nyc.gov/assets/buildings/local_laws/ll97of2019.pd

Financial Penalty = xkgCO2 x \$268

§ 28-320.6 Penalties. An owner of a covered building who has submitted a report pursuant to section 28-320.3.7 which indicates that such building has exceeded its annual building emissions limit shall be liable for a civil penalty of not more than an amount equal to the difference between the building emissions limit for such year and the reported building emissions for such year, multiplied by \$268.

https://www.nyc.gov/assets/buildings/local_laws/ll97of2019.pd

COMMERCIAL TARGETS CORPORATE PROTOCOLS

https://www.lendlease.com/us/sustainability/climate-and-environment/

CURRENT CONTEXT SUMMARY

leducation.org

What does this mean for lighting?

• Procurement impact

- federal gvt and corporate targets creating demand
- Lighting designers with defined sustainability performance criteria
- Penalty avoidance
 - role in avoiding building owner penalties (compare lighting industry EPDs in section 3 x \$286)

Part I	Current Context
Part II	Lighting Metrics
Part III	Industry EPD results
Part IV	Future Directions
Part V	Q&A

METRICS Performance Criteria

leducation.

Quantitative thresholds 2024: Examples from MEP firms inhouse lighting teams

- Sustainability Performance Criteria:
 - consider for all new projects (Atelier 10, New York and London projects)
- Sustainability Performance Criteria:
 - top 3 luminaire types by budget covered by EPDs and preference for products with EPD reporting (Borealis Lighting Studio, Arvest workspace project)
- Lighting Key Performance Indicators:
 - 30% of all fixture schedule types covered by Environmental Reporting (Burro Happold in house target)

100% Architectural Performance Luminaires and 48% of decorative luminaires covered by suppliers with EPDs PROJECT CASE STUDY: ARVEST

Considering new material palettes

Wallwasher (left) Mycomaterial marbled texture from mycelium strain (below)

METRICS Performance Criteria

Quantitative thresholds 2024: Examples from lighting design firms

- Circular economy targets:
 - TM66 ratings example of Nulty setting 2 star rating
- Embodied Carbon targets
 - TM65 : Lighting framework clarified
 - free tool results compared to EPD results

Lumens per watt (Minimum Efficiency Performance levels) 120lm/W

New ecodesign requirements for lighting products

A consultation on proposed amendments to the minimum energy performance standards for lighting products from late 2023.

Closing date: 4 April 2023

Bepartment for

https://assets.publishing.service.gov.uk/media/63d3c39c8fa8f51881c99e6c/newecodesign-requirements-for-lighting-products.pdf

METRICS Efficacy

METRICS Carbon Intensity

LEDucation. Trade Show and Conference

UK Net Zero Carbon Building Standard Embodied Carbon Performance Levels

Next Steps

Embodied Carbon performance levels

Please do complete the technical testing **consultation** giving feedback on the embodied carbon performance levels.

If you feel that the performance levels shown are too high/low due to your experience, we would encourage you to share the data from your own projects (see below).

Embodied carbon further data

The NZCBS is also currently actively seeking further Embodied Carbon data, particularly:

for the Retail, Data Centre, Hotels, and Sports and Leisure sectors
 for projects with high-quality data for Modules A-C.
 where the assessment has been completed for all elements, not only structure.

Higher education, Healthcare, and Science and Technology sectors were also relatively low in data and more would be welcomed.

This data should be uploaded to the BECD at https://beta.becd.co.uk.

Refit data

If you have embodied carbon refit data from UK-based projects in either the Office, Retail or Hotel sectors, please get in touch by emailing TG1b@NZCbuildings.co.uk.

leducation.org

METRICS

Lighting Application data gap

New Build Data Overview and Quality

Sector		Offices	Homes*	Commercial residential	Logistics & warehouses	Healthcare	Schools	Higher education	Culture & entertainmen t	Science & technology	Retail	Data centres	Sports & leisure	Hotels															
Number of pr	ojects	72	238*	78	20	10	94	10	33	16	1	1	3	0															
Mean GIA of	projects (m²)	105,000	5,900*	186,000	159,000	500	2,900	12,300	900	48,000	N/A	N/A	N/A	N/A															
	Substructure (1)	Good	d	Good	Good	Good	Good	Good, but not	Good, but not	Good	N/A	N/A	N/A	N/A															
	Superstructure (2.1-2.4)	Good		Good	Good	Good	Good	split by element	split by element	Good	N/A	N/A	N/A	N/A															
Quality of upfront embodied	Facade (2.5- 2.6)	Good	Good, but not split by element	Good	Good	ND	Good	ND	ND	ND	N/A	N/A	N/A	N/A															
carbon data (A1- A5)	Cat A fitout (2.7-3)	Good		split by element	split by element	split by element	split by element	split by element	split by element	split by element	split by element	split by element	split by element	split by element	split by element	split by element	split by element	split by element	split by element	Good	Good	ND	ND	ND	ND	ND	N/A	N/A	N/A
	FF&E (4)	Good		Good	Good	ND	ND	ND	ND	ND	N/A	N/A	N/A	N/A															
	MEP (5)	Good		Good	Good	ND	Only 2 projects	ND	ND	ND	N/A	N/A	N/A	N/A															
Quality of in- carbon data (use embodied B1-C4)	Poor quality	Poor quality	Good	Good	ND	Poor quality	ND	ND	ND	N/A	N/A	N/A	N/A															

ND = no data. For A1-A5 elements, this was then backfilled with average figures (facade taken from Offices sector, all other elements from the Commercial Residential sector) *note: 31 projects were Future Homes Hub submissions, analysing single-family homes. This sub-sector will be considered separately when setting limits.

leducation.org

20

METRICS

Lighting Application targets to be specified

METRICS

Upfront v Lifetime impact

OPERATIONAL v EMBODIED IMPACT

Source: Adapted by authors from Carbon Leadership Forum (2022) and data from Embodied Carbon Benchmark Study and Commercial Buildings Energy Consumption Survey (CBECS 2022).

leducation.org

Part I	Current Context
Part II	Lighting Metrics
Part III	Industry EPD
results	
Part IV	Future
Directions	
Part V	Q&A

SECTION OVERVIEW

- 5 product categories
- GWP
- assumptions
- hotspots
- areas of interpretation
- further research

LCA Incubator Industry Progress

Decarbonization in Lighting : The Hotspots I March 19 2024 ©Leela Shanker

LCA Incubator Industry Progress

LCA Incubator Industry Progress

LCA Tales From the Front I March 8 2023 ©Leela Shanker

LCA Incubator Global Representation

INDUSTRY EPD 5 KEY LUMINAIRES

PERFORMANCE	PRODUCT						
CRITERIA	Downlight	Cylinder	Linear	Troffer	Post Top		
Mounting	Recessed	Pendant	Pendant	Recessed	Pole-mounted		
Key dimensions (diameter, length and/ or width)	3" / 100mm ø	3" / 100mm ø	4' / 1200mm L 2"or 4"/ 50mm or 100mm W	2' x 2' / 600mm x 600mm	12' / 3.5m pole		
Optics	60°	60°	90° direct batwing indirect	diffuse ambient	Type II, full cut off		
Lumens	1500 LM	1500 LM	D: 375 LM per foot I: 700 LM per foot	3500 LM	2500+ LM'		
ССТ	3000K	3000K	3000K	3000K	3000K		
CRI	90	90	90	90	80		
Accessories	None	None	None	None	Glare Control TBA		

leducation.org

DEEP DIVE LINEAR FINDINGS

[add Cradle to Gate v Cradle to Grave analysis]

Linear Baseline Declared Unit - Contribution to GWP

Linear Declared Unit - Single vs. Dual Driver/LED

Linear Declared Unit - Sample Deviation

A1: Raw Material Production A2: Transportation A3: Manufacturing

Linear Functional Unit - Sample Deviation

Service Life Sensitivity

📕 A1-A5: Manufacturing 📕 B: Operational energy 📗 C: End of Life

International Shipping

Installation Location

Key Findings: Linear

Assumptions:

Impact:

- Highest impact material: xxxxxx xxxxxxxxx
- Highest impact manufacturing process:
- Highest impact production phase:
- GWP

Notes:

Further Study:

Assumptions

- Installation what is included?
- Drivers dual or single circuit?
- Use phase presentation?
- Lifetime capped at 70,000?
- Manufacturer reporting
- Grids Global average? US Average, London, LA, NYC, Paris, Copenhagen, Shanghai / Taiwan, Dubai, Venezuela, Capetown, Melbourne,
- Normalised functional unit and product specific

GLOBAL PATHWAYS International Standards

Home > P.E.P. Association - Zoom on ...

Agreement for using PEP PSR in standardization

P.E.P. Association fully supports the transposition of the PSR rules developed by Association PEP into standards at national, European and international level.

For this reason, Association PEP wishes to clarify that the use of the PEP ecopassport* program PSRs for transposition into standards at national, European, and international level is not subject to approval by the PEP General Secretariat. Nevertheless, in case of use, PEP has to be informed to have an overview of the standard development at national, european or international level.

Consequently, all PSRs produced by the PEP ecopassport* program will be made available after publication to all interested formal SDOs (such as IEC, ISO, CEN, CENELEC and their national equivalents) as input for their EPD standardization efforts (including possible reference as a Publicly Available Specification (PAS)). E.g. Lighting PSR 14 for Luminaires and TM65 LA for local addenda

List of PSR available

Association P.E.P. contacts | links | legal | site map 11-17 rue de l'Amiral Hamelin 75016 Paris • France © 2023

5 Key Luminaire Categories

Enlighten Europe I June 30 2023©: Leela Shanker

weight

(kg)

GWP

USE PHASE SCENARIOS Energy Grids

.......

.............

...............

......................

....

...

0.0

..............

.

.

.............

......

....

..........

.... ..

.....

....

.........

.............

............

* * * * * * *

....

............

...........

............

...

...

....

.......

.........

......

....

...

........

..

...

....

.....

.....

....

...

. .

....

........

......

.........

..........

...........

.

.

.

...........

.

..........

..........

.

........

.......

......

.......

......

.....

.....

....

...

.

...........

....

.....

..................

........................

..................

...................

...................

..................

............

.............

............

...........

..........

........

.......

.........

..........

..........

........

.......

.......

.......

......

....

...

.....

......

...

...

.

....

....

...

0.0

. .

. .

.................

....

....

.....

....

....

0 0 0

. ...

0.0

.

...

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

. .

.............................

........

00 00

....

............

...........

............

............

............

..........

....

......

....

....

. .

. .

0.4

......

....

0 0

....

. .

. .

...

...........

....

James and Alana to show relative impact based on grid mix

Underlying assumptions:

- Transport
- 3500 hours
 Annual operating
 hours

 Maintenance of drivers and LEDs

LA, NYC, London, Paris, Dubai, Shanghai, Copenhagen

Next Steps:

01 Clarification of Assumptions As a result of discussion

05 Phase 2 contributors Cost and contact for people wanting to add their data to the industry average

02 Additional Industry EPDs Other Categories

LED tape, ++? - Cost

- 03 Product Specific EPDs Proposed model - Cost and number
- 04 Industry Organisations IES, IALD, CIBSE, Lighting Europe, MEP2040
- 05 Roundtables

[™]-65vEPD, ROI, Designer Lavouts, Preferred Supplier Lists

Part I	Current Context
Part II	Lighting Metrics
Part III results	Industry EPD
Part IV Directions	Future
Part V	Q&A

1. MARKET DISCONNECT

Pioneering designers, owners and product innovators ready to evolve legacy construction practices cannot find each other to collaborate on projects that accelerate adoption of sustainable design practices. Manufacturers have expressed their need to find designers and projects to cover their proposed significant reporting costs to pursue EPDs on all products. Developers such as Lendlease have requested preferred supplier lists and specifications drafting to protect procurement policies and achieve their net zero goals. Designers have sought templates to save time on sustainable product specifications and the need to find clients who support time and effort spent on innovation.

OPPORTUNITY:

Design applications grow the ecosystem and demand for its services

Connecting strategic partners from design, product manufacturing and property grows the ecosystem of early adopter sustainability champions across all sectors. Creating collaborative opportunities to test new strategies and materials moves construction into the next phase of development following measurement: optimization.

2. MARKET IMBALANCE

In the absence of legislative requirement for material transparency and life cycle assessment reporting, demand for LCA work is driven by the corporate sector. Individual firms committed to the creation of data (manufacturers) and application of data (designers) are responsible for incentivebased market demand, despite the lack of ambitious targets set by industry associations or green building frameworks.

Demand for data (including analytics, reports, standards for measurement and industry mapping) continues to grow as manufacturer awareness has increased, even for complex interior products such as lighting and MEP items.

While supply of data is growing, without designer education to increase literacy in this new sustainability language, their ability to specify responsible products with material impact disclosure or adopt new reporting frameworks will be limited.

OPPORTUNITY:

Designer demand for data drives Manufacturer supply

By engaging the design sector, the source of demand for "feedstock" data from suppliers can increase.

Designers have requested educational resources, preferred supplier lists, and opportunities to apply new strategies and materials on projects. By serving designers and consultant engineers, manufacturers can support owner and architect clients who have projects pursuing LEED certification.

Design firm - manufacturer partnerships will accelerate uptake of existing reports and test applied strategies utilising this data.

3. MARKET RESISTANCE

Misinformation and delay tactics by incumbent players is preventing the market from gaining critical mass with respect to standards setting and reporting. As a result, even willing, early adopters may be delaying engaging in life cycle assessment despite the economies of scale accessible through larger "package deals" with multiple firms committed upfront.

"Sustainability" as a design tool

"Sustainability" as a compliance burden

OPPORTUNITY:

Positioning sustainability as a design tool drives demand by reframing as innovation opportunity

Reframing sustainability work as a business design tool rather than a compliance exercise offers a more positive lens through which to approach this new scope of work.

Business development benefit:

Positioning this scope of work as synonymous with design leadership and critical enquiry reinforces the value of investment a company (manufacturer or design) gains from the investment.

Inhouse culture and team building benefit: Elevating design and innovation validates resonates with in-house experts who want to grow and challenge the status quo.

Practical implications

- Industry EPDs on projects (number of credits)
- Case studies e.g. Arvest 100% arch performance and 48% decorative

Industry Code

Industry Partners

DESIGN PARTNERSHIPS - bringing it to life!!!

Conclusions:

- 01 LEED credits Can include variation of 10%?
- 02 Cradle to Gate v Cradle to Grave

XXXXX

- 03 ROI Proposed model
- 04 TBC IES, IALD, CIBSE, Lighting Europe

Part I	Current Context
Part II	Lighting Metrics
Part III	Industry EPD results
Part IV	Future Directions
Part V	Q&A

Contacts

This concludes The American Institute of Architects Continuing Education Systems Course

